]> Dogcows Code - chaz/yoink/blob - src/cml/matrix/lu.h
testing new non-autotools build system
[chaz/yoink] / src / cml / matrix / lu.h
1 /* -*- C++ -*- ------------------------------------------------------------
2
3 Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
4
5 The Configurable Math Library (CML) is distributed under the terms of the
6 Boost Software License, v1.0 (see cml/LICENSE for details).
7
8 *-----------------------------------------------------------------------*/
9 /** @file
10 * @brief Implements LU decomposition for square matrix expressions.
11 *
12 * @todo The LU implementation does not check for a zero diagonal entry
13 * (implying that the input has no LU factorization).
14 *
15 * @todo Should also have a pivoting implementation.
16 *
17 * @todo need to throw a numeric error if the determinant of the matrix
18 * given to lu(), lu_solve(), or inverse() is 0.
19 *
20 * @internal The implementation is the same for fixed- and dynamic-size
21 * matrices. It can be sped up for small matrices later.
22 */
23
24 #ifndef lu_h
25 #define lu_h
26
27 #include <cml/et/size_checking.h>
28 #include <cml/matrix/matrix_expr.h>
29 #include <cml/matvec/matvec_promotions.h>
30
31 /* This is used below to create a more meaningful compile-time error when
32 * lu is not provided with a matrix or MatrixExpr argument:
33 */
34 struct lu_expects_a_matrix_arg_error;
35
36 /* This is used below to create a more meaningful compile-time error when
37 * lu_inplace is not provided with an assignable matrix argument:
38 */
39 struct lu_inplace_expects_an_assignable_matrix_arg_error;
40
41 namespace cml {
42 namespace detail {
43
44 /* Compute the LU decomposition in-place: */
45 template<class MatT> inline
46 void lu_inplace(MatT& A)
47 {
48 /* Shorthand: */
49 typedef et::ExprTraits<MatT> arg_traits;
50 typedef typename arg_traits::result_tag arg_result;
51 typedef typename arg_traits::assignable_tag arg_assignment;
52 typedef typename arg_traits::size_tag size_tag;
53 typedef typename arg_traits::value_type value_type;
54
55 /* lu_inplace() requires an assignable matrix expression: */
56 CML_STATIC_REQUIRE_M(
57 (same_type<arg_result, et::matrix_result_tag>::is_true
58 && same_type<arg_assignment, et::assignable_tag>::is_true),
59 lu_inplace_expects_an_assignable_matrix_arg_error);
60 /* Note: parens are required here so that the preprocessor ignores the
61 * commas.
62 */
63
64 /* Verify that the matrix is square, and get the size: */
65 ssize_t N = (ssize_t) cml::et::CheckedSquare(A, size_tag());
66
67
68 for(ssize_t k = 0; k < N-1; ++k) {
69 /* XXX Should check if A(k,k) = 0! */
70 for(ssize_t i = k+1; i < N; ++i) {
71 value_type n = (A(i,k) /= A(k,k));
72 for(ssize_t j = k+1; j < N; ++ j) {
73 A(i,j) -= n*A(k,j);
74 }
75 }
76 }
77 }
78
79 /* Compute the LU decomposition, and return a copy of the result: */
80 template<class MatT>
81 inline typename MatT::temporary_type
82 lu_copy(const MatT& M)
83 {
84 /* Shorthand: */
85 typedef et::ExprTraits<MatT> arg_traits;
86 typedef typename arg_traits::result_tag arg_result;
87
88 /* lu_with_copy() requires a matrix expression: */
89 CML_STATIC_REQUIRE_M(
90 (same_type<arg_result, et::matrix_result_tag>::is_true),
91 lu_expects_a_matrix_arg_error);
92 /* Note: parens are required here so that the preprocessor ignores the
93 * commas.
94 */
95
96 /* Use the in-place LU function, and return the result: */
97 typename MatT::temporary_type A;
98 cml::et::detail::Resize(A,M.rows(),M.cols());
99 A = M;
100 lu_inplace(A);
101 return A;
102 }
103
104 } // namespace detail
105
106 /** LU factorization for a matrix. */
107 template<typename E, class AT, typename BO, class L>
108 inline typename matrix<E,AT,BO,L>::temporary_type
109 lu(const matrix<E,AT,BO,L>& m)
110 {
111 return detail::lu_copy(m);
112 }
113
114 /** LU factorization for a matrix expression. */
115 template<typename XprT>
116 inline typename et::MatrixXpr<XprT>::temporary_type
117 lu(const et::MatrixXpr<XprT>& e)
118 {
119 return detail::lu_copy(e);
120 }
121
122 /** Solve y = LUx for x.
123 *
124 * This solves Lb = y for b by forward substitution, then Ux = b for x by
125 * backward substitution.
126 */
127 template<typename MatT, typename VecT> inline
128 typename et::MatVecPromote<MatT,VecT>::temporary_type
129 lu_solve(const MatT& LU, const VecT& b)
130 {
131 /* Shorthand. */
132 typedef et::ExprTraits<MatT> lu_traits;
133 typedef typename et::MatVecPromote<MatT,VecT>::temporary_type vector_type;
134 typedef typename vector_type::value_type value_type;
135
136 /* Verify that the matrix is square, and get the size: */
137 ssize_t N = (ssize_t) cml::et::CheckedSquare(
138 LU, typename lu_traits::size_tag());
139
140 /* Verify that the matrix and vector have compatible sizes: */
141 et::CheckedSize(LU, b, typename vector_type::size_tag());
142
143 /* Solve Ly = b for y by forward substitution. The entries below the
144 * diagonal of LU correspond to L, understood to be below a diagonal of
145 * 1's:
146 */
147 vector_type y; cml::et::detail::Resize(y,N);
148 for(ssize_t i = 0; i < N; ++i) {
149 y[i] = b[i];
150 for(ssize_t j = 0; j < i; ++j) {
151 y[i] -= LU(i,j)*y[j];
152 }
153 }
154
155 /* Solve Ux = y for x by backward substitution. The entries at and above
156 * the diagonal of LU correspond to U:
157 */
158 vector_type x; cml::et::detail::Resize(x,N);
159 for(ssize_t i = N-1; i >= 0; --i) {
160 x[i] = y[i];
161 for(ssize_t j = i+1; j < N; ++j) {
162 x[i] -= LU(i,j)*x[j];
163 }
164 x[i] /= LU(i,i);
165 }
166
167 /* Return x: */
168 return x;
169 }
170
171 } // namespace cml
172
173 #endif
174
175 // -------------------------------------------------------------------------
176 // vim:ft=cpp
This page took 0.041551 seconds and 4 git commands to generate.