--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Main CML header to include all CML functionality.
+ *
+ * @todo load vectors, matrices, and quaternions from a stream.
+ *
+ * @todo Move common vector and matrix class ops to a base class (requires
+ * SCOOP-like programming, see below).
+ *
+ * @todo Implement matrix<>::orthogonalize().
+ *
+ * @todo Add is_square<>, is_rectangular<>, etc. to make it easier to
+ * detect specific matrix types.
+ *
+ * @todo Implement dedicated square matrix classes to get rid of duplicated
+ * code in the specialized matrix classes.
+ *
+ * @todo Implement automatic temporary generation, along with expression
+ * node return types for mat-vec and mat-mat operators.
+ *
+ * @todo switch to ssize_t instead of size_t to avoid having to explicitly
+ * deal with wrap-arounds to 2^32-1 when a size_t is subtracted from.
+ *
+ * @todo Finish tests for mat-vec multiply.
+ *
+ * @todo Differentiate between references used for function arguments, and
+ * those used for variable types. In particular, GCC 3.4 requires const T &
+ * function arguments to ensure complete unrolling/inlining of expressions.
+ *
+ * @todo Specialize matrix multiplication based upon the size type (fixed or
+ * dynamic). This makes a difference for at least GCC 3.4.
+ *
+ * @todo need a build system for the tests/ and examples/ directories.
+ *
+ * @todo clean up the testing infrastructure, and make it easier to add new
+ * tests
+ *
+ * @todo figure out if scalars should be passed by value or reference, or
+ * if it should be determined by traits
+ *
+ * @todo change use of typename and class to be like Alexandrescu book
+ *
+ * @todo figure out if it makes sense to unroll assignment if either the
+ * source expression or the target vector/matrix has a fixed size (right
+ * now, unrolling happens only if the target has a fixed size)
+ *
+ * @todo Allow addition of new types, a la glommable ETs (but simpler).
+ * Can use ideas from "SCOOP" method: Nicolas Burrus, Alexandre Duret-Lutz,
+ * Thierry Géraud, David Lesage and Raphaël Poss. A Static C++
+ * Object-Oriented Programming (SCOOP) Paradigm Mixing Benefits of
+ * Traditional OOP and Generic Programming. In the Proceedings of the
+ * Workshop on Multiple Paradigm with OO Languages (MPOOL'03) Anaheim, CA,
+ * USA Oct. 2003
+ */
+
+#ifndef cml_h
+#define cml_h
+
+#include <cml/vector.h>
+#include <cml/matrix.h>
+#include <cml/quaternion.h>
+#include <cml/util.h>
+#include <cml/mathlib/mathlib.h>
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Useful constants.
+ */
+
+#ifndef cml_constants_h
+#define cml_constants_h
+
+#include <cmath>
+
+#if !defined(M_PI)
+#define M_PI 3.14159265358979323846264338327950288
+#endif
+
+#if !defined(M_SQRT2)
+#define M_SQRT2 1.41421356237309504880168872420969808
+#endif
+
+#if !defined(M_E)
+#define M_E 2.71828182845904523536028747135266250
+#endif
+
+namespace cml {
+
+#if 1
+
+/** Templated constants struct.
+ *
+ * Either float or double can be used.
+ */
+template<typename Float>
+struct constants {
+ static Float pi() { return M_PI; }
+ static Float two_pi() { return 2.*M_PI; }
+ static Float inv_pi() { return 1./M_PI; }
+ static Float inv_two_pi() { return 1./(2.*M_PI); }
+ static Float pi_over_2() { return M_PI/2.; }
+ static Float pi_over_4() { return M_PI/4.; }
+ static Float deg_per_rad() { return 180./M_PI; }
+ static Float rad_per_deg() { return M_PI/180.; }
+ static Float sqrt_2() { return M_SQRT2; }
+ static Float sqrt_3() { return 1.732050807568877293527446341505; }
+ static Float sqrt_5() { return 2.236067977499789696409173668731; }
+ static Float sqrt_6() { return 2.449489742783178098197284074705; }
+ static Float e() { return M_E; }
+};
+
+#else
+
+/* XXX This version requires an explicit instantiation of *every* constant
+ * below, e.g.:
+ *
+ * template<typename F> const F cml::constants<F>::pi;
+ */
+/** Templated constants struct.
+ *
+ * Either float or double can be used.
+ */
+template<typename Float>
+struct constants {
+ static const Float pi = M_PI;
+ static const Float two_pi = 2.*M_PI;
+ static const Float inv_pi = 1./M_PI; /* 1/pi */
+ static const Float inv_two_pi = 1./(2.*M_PI); /* 1/(2*pi) */
+ static const Float pi_over_2 = M_PI/2.; /* pi/2 */
+ static const Float pi_over_4 = M_PI/4.; /* pi/4 */
+ static const Float deg_per_rad = 180./M_PI;
+ static const Float rad_per_deg = M_PI/180.;
+ static const Float sqrt_2 = M_SQRT2;
+ static const Float sqrt_3 = 1.73205080756887729352744634150587237;
+ static const Float sqrt_5 = 2.23606797749978969640917366873127624;
+ static const Float sqrt_6 = 2.44948974278317809819728407470589139;
+ static const Float e = M_E;
+};
+
+#endif
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Macros and template metaprogramming to implement compile- and run-time
+ * assertions.
+ */
+
+#ifndef cml_assert_h
+#define cml_assert_h
+
+#include <cml/core/cml_meta.h>
+
+namespace cml {
+
+/* Join preprocessor macros into a new preprocessor macro: */
+#define CML_JOIN(X,Y) CML_DO_JOIN(X,Y)
+#define CML_DO_JOIN(X,Y) CML_DO_JOIN2(X,Y)
+#define CML_DO_JOIN2(X,Y) X##Y
+
+/* Change a macro value into a string: */
+#define TO_STRING(X) TO_STRING2(X)
+#define TO_STRING2(X) #X
+
+/** Default undefined compile-time assertion struct. */
+template<bool T> struct STATIC_ASSERTION_FAILURE;
+
+/** Struct instantiated when a true assertion is made at compile-time. */
+template<> struct STATIC_ASSERTION_FAILURE<true> {
+ typedef true_type result;
+ enum { value = true };
+};
+
+/** Create a compile-time assertion.
+ *
+ * @note Compile-time assertions must be expressions that can be evaluated at
+ * comile time. This means that the expression must only rely on constants,
+ * enums, and/or template parameters, not variables having run-time storage
+ * requirements.
+ *
+ * @warning Enclose expressions that have commas with parens, otherwise the
+ * preprocessor will parse the commas as macro argument separators!
+ *
+ * @sa STATIC_ASSERTION_FAILURE
+ */
+#define CML_STATIC_REQUIRE(_E_) \
+ typedef typename STATIC_ASSERTION_FAILURE<(_E_)>::result \
+ CML_JOIN(__cml_assert_test_typedef_, __LINE__)
+
+
+/** A more meaningful compile-time assertion struct.
+ *
+ * The parameter M is a struct type which has been declared but not
+ * defined; e.g. struct this_is_an_error.
+ *
+ * When used with CML_STATIC_REQUIRE_M(<expr>,M), the compiler errors will
+ * contain the struct name at the point of the error.
+ */
+template<bool T, typename M> struct STATIC_ASSERTION_FAILURE_M {
+ typename M::bogus result;
+};
+
+/** Instantiated for true assertions. */
+template<typename M> struct STATIC_ASSERTION_FAILURE_M<true,M> {
+ typedef true_type result;
+ enum { value = true };
+};
+
+/** Create a compile-time assertion with a message.
+ *
+ * @note Compile-time assertions must be expressions that can be evaluated at
+ * comile time. This means that the expression must only rely on constants,
+ * enums, and/or template parameters, not variables having run-time storage
+ * requirements.
+ *
+ * @warning Enclose expressions that have commas with parens, otherwise the
+ * preprocessor will parse the commas as macro argument separators!
+ *
+ * @sa STATIC_ASSERTION_FAILURE_M
+ */
+#define CML_STATIC_REQUIRE_M(_E_, _M_) \
+ typedef typename STATIC_ASSERTION_FAILURE_M<(_E_),_M_> \
+ ::result CML_JOIN(__bogus_assert_type_, __LINE__)
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief A few simple metaprogramming tools.
+ */
+
+#ifndef cml_meta_h
+#define cml_meta_h
+
+/* Include all of the template metaprogramming tools: */
+#include <cml/core/meta/common.h>
+#include <cml/core/meta/if.h>
+#include <cml/core/meta/switch.h>
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef core_common_h
+#define core_common_h
+
+// XXX This isn't really the right place for this.
+#if defined(_MSC_VER)
+#include <cstdlib>
+#ifndef _SSIZE_T_DEFINED
+#ifdef _WIN64
+typedef __int64 ssize_t;
+#else
+typedef _W64 int ssize_t;
+#endif
+#define _SSIZE_T_DEFINED
+#endif
+#endif
+
+#include <cstddef> // for size_t
+#include <utility> // for std::pair<>
+#include <cml/defaults.h>
+
+namespace cml {
+
+/** 1D tag (to select array shape). */
+struct oned_tag {};
+
+/** 2D tag (to select array shape). */
+struct twod_tag {};
+
+/** Statically-allocated memory tag. */
+struct fixed_memory_tag {};
+
+/** Dynamically-allocated memory tag. */
+struct dynamic_memory_tag {};
+
+/** Externally-allocated memory tag. */
+struct external_memory_tag {};
+
+/** Statically-sized tag. */
+struct fixed_size_tag {};
+
+/** Runtime-sized tag. */
+struct dynamic_size_tag {};
+
+/** Resizable tag. */
+struct resizable_tag {};
+
+/** Not resizable tag. */
+struct not_resizable_tag {};
+
+/** Unit-sized tag. */
+struct unit_size_tag {};
+
+/** Row-major storage tag. */
+struct row_major {};
+
+/** Col-major storage tag. */
+struct col_major {};
+
+/** Row-vector matrix basis tag. */
+struct row_basis {};
+
+/** Column-vector matrix basis tag. */
+struct col_basis {};
+
+/* This is the pair returned from the matrix size() method, as well as from
+ * the matrix expression size checking code:
+ */
+typedef std::pair<size_t,size_t> matrix_size;
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef dynamic_1D_h
+#define dynamic_1D_h
+
+#include <vector>
+#include <cml/core/common.h>
+#include <cml/dynamic.h>
+
+namespace cml {
+
+/** Dynamically-sized and allocated 1D array.
+ *
+ * @note The allocator should be an STL-compatible allocator.
+ *
+ * @internal The internal array type <em>must</em> have the proper copy
+ * semantics, otherwise copy construction will fail.
+ */
+template<typename Element, class Alloc>
+class dynamic_1D
+{
+ public:
+
+ /* Record the allocator type: */
+ typedef typename Alloc::template rebind<Element>::other allocator_type;
+
+ /* Record the generator: */
+ typedef dynamic<Alloc> generator_type;
+
+ /* Array implementation: */
+ typedef std::vector<Element,allocator_type> array_impl;
+
+ /* Standard: */
+ typedef typename array_impl::value_type value_type;
+ typedef typename array_impl::pointer pointer;
+ typedef typename array_impl::reference reference;
+ typedef typename array_impl::const_reference const_reference;
+ typedef typename array_impl::const_pointer const_pointer;
+
+ /* For matching by memory type: */
+ typedef dynamic_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef dynamic_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef oned_tag dimension_tag;
+
+
+ public:
+
+ /** Dynamic arrays have no fixed size. */
+ enum { array_size = -1 };
+
+
+ public:
+
+ /** Construct a dynamic array with no size. */
+ dynamic_1D() {}
+
+ /** Construct a dynamic array given the size. */
+ explicit dynamic_1D(size_t size) : m_data(size) {}
+
+
+ public:
+
+ /** Return the number of elements in the array. */
+ size_t size() const { return this->m_data.size(); }
+
+ /** Access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a mutable reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ reference operator[](size_t i) { return this->m_data[i]; }
+
+ /** Const access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a const reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ const_reference operator[](size_t i) const { return this->m_data[i]; }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return &m_data[0]; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return &m_data[0]; }
+
+
+ public:
+
+ /** Set the array size to the given value.
+ *
+ * @warning This is not guaranteed to preserve the original data.
+ */
+ void resize(size_t s) { this->m_data.resize(s); }
+
+
+ protected:
+
+ array_impl m_data;
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef dynamic_2D_h
+#define dynamic_2D_h
+
+#include <vector>
+#include <cml/core/common.h>
+#include <cml/core/dynamic_1D.h>
+#include <cml/dynamic.h>
+
+namespace cml {
+
+/** Dynamically-sized and allocated 2D array.
+ *
+ * @note The allocator should be an STL-compatible allocator.
+ *
+ * @internal The internal array type <em>must</em> have the proper copy
+ * semantics, otherwise copy construction will fail.
+ *
+ * @internal This class does not need a destructor.
+ */
+template<typename Element, typename Layout, class Alloc>
+class dynamic_2D
+{
+ public:
+
+ /* Record the allocator type: */
+ typedef typename Alloc::template rebind<Element>::other allocator_type;
+
+ /* Record the generator: */
+ typedef dynamic<Alloc> generator_type;
+
+ /* Array implementation: */
+ typedef std::vector<Element,allocator_type> array_impl;
+
+ /* Standard: */
+ typedef typename array_impl::value_type value_type;
+ typedef typename array_impl::pointer pointer;
+ typedef typename array_impl::reference reference;
+ typedef typename array_impl::const_reference const_reference;
+ typedef typename array_impl::const_pointer const_pointer;
+
+ /* For matching by memory layout: */
+ typedef Layout layout;
+
+ /* For matching by memory type: */
+ typedef dynamic_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef dynamic_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef twod_tag dimension_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef dynamic_2D<Element,Layout,Alloc> transposed_type;
+
+ /* To simplify the matrix row and column operators: */
+ typedef dynamic_1D<Element,Alloc> row_array_type;
+ typedef dynamic_1D<Element,Alloc> col_array_type;
+
+
+ protected:
+
+ /** Construct a dynamic array with no size. */
+ dynamic_2D() {}
+
+ /** Construct a dynamic matrix given the dimensions.
+ *
+ * This constructor is guaranteed to throw only if the allocator throws.
+ * If the array implementation guarantees that the array data structure is
+ * not modified after an exception, then this constructor is
+ * exception-safe.
+ *
+ * @throws only if the allocator throws during an allocation.
+ */
+ explicit dynamic_2D(size_t rows, size_t cols)
+ : m_rows(rows), m_cols(cols), m_data(rows*cols) {}
+
+
+ public:
+
+ enum { array_rows = -1, array_cols = -1 };
+
+
+ public:
+
+ /** Return the number of rows in the array. */
+ size_t rows() const { return m_rows; }
+
+ /** Return the number of cols in the array. */
+ size_t cols() const { return m_cols; }
+
+
+ public:
+
+ /** Access the given element of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns mutable reference.
+ */
+ reference operator()(size_t row, size_t col) {
+ return get_element(row, col, layout());
+ }
+
+ /** Access the given element of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns const reference.
+ */
+ const_reference operator()(size_t row, size_t col) const {
+ return get_element(row, col, layout());
+ }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return &m_data[0]; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return &m_data[0]; }
+
+
+ public:
+
+ /** Resize the array.
+ *
+ * @warning This is not guaranteed to preserve the original data.
+ */
+ void resize(size_t rows, size_t cols) {
+ m_data.resize(rows*cols); m_rows = rows; m_cols = cols;
+ }
+
+
+ protected:
+
+ reference get_element(size_t row, size_t col, row_major) {
+ return m_data[row*m_cols + col];
+ }
+
+ const_reference get_element(size_t row, size_t col, row_major) const {
+ return m_data[row*m_cols + col];
+ }
+
+ reference get_element(size_t row, size_t col, col_major) {
+ return m_data[col*m_rows + row];
+ }
+
+ const_reference get_element(size_t row, size_t col, col_major) const {
+ return m_data[col*m_rows + row];
+ }
+
+
+ protected:
+
+ size_t m_rows, m_cols;
+ array_impl m_data;
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Defines the fixed-size and runtime-sized external 1D arrays.
+ *
+ * @todo Need a better way to designate non-resizable, run-time sized
+ * arrays (e.g. by a resizeable tag).
+ */
+
+#ifndef external_1D_h
+#define external_1D_h
+
+#include <cml/core/common.h>
+#include <cml/core/cml_meta.h>
+#include <cml/core/cml_assert.h>
+#include <cml/external.h>
+
+namespace cml {
+
+/** Fixed-size external 1D array.
+ *
+ * Both the memory and the size are fixed at compile time, and cannot be
+ * changed.
+ */
+template<typename Element, int Size = -1>
+class external_1D
+{
+ public:
+
+ /* Require Size > 0: */
+ CML_STATIC_REQUIRE(Size > 0);
+
+ /* Record the generator: */
+ typedef external<Size,-1> generator_type;
+
+ /* Standard: */
+ typedef Element value_type;
+ typedef Element* pointer;
+ typedef Element& reference;
+ typedef const Element& const_reference;
+ typedef const Element* const_pointer;
+
+ /* Array implementation: */
+ typedef value_type array_impl[Size];
+
+ /* For matching by memory type: */
+ typedef external_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef fixed_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef not_resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef oned_tag dimension_tag;
+
+
+ public:
+
+ /** The length as an enumerated value. */
+ enum { array_size = Size };
+
+
+ public:
+
+ external_1D(pointer const ptr)
+ : m_data(ptr) {}
+
+
+ public:
+
+ /** Return the number of elements in the array. */
+ size_t size() const { return size_t(array_size); }
+
+ /** Access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a mutable reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ reference operator[](size_t i) { return m_data[i]; }
+
+ /** Const access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a const reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ const_reference operator[](size_t i) const { return m_data[i]; }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return m_data; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return m_data; }
+
+
+ protected:
+
+ pointer const m_data;
+
+
+ private:
+
+ /* Initialization without an argument isn't allowed: */
+ external_1D();
+};
+
+/** Run-time sized external 1D array.
+ *
+ * Both the memory and the size are fixed at run-time, and cannot be
+ * changed. This is a specialization for the case that Rows and Cols are
+ * not specified (i.e. given as the default of -1,-1).
+ */
+template<typename Element>
+class external_1D<Element,-1>
+{
+ public:
+
+ /* Record the generator. Note: this is *not* unique, as it is the same
+ * generator used by external_2D. However, external_2D is used only by
+ * matrix<> classes, so this is not a problem.
+ */
+ typedef external<> generator_type;
+
+ /* Standard: */
+ typedef Element value_type;
+ typedef Element* pointer;
+ typedef Element& reference;
+ typedef const Element& const_reference;
+ typedef const Element* const_pointer;
+
+ /* For matching by memory type: */
+ typedef external_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef dynamic_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef not_resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef oned_tag dimension_tag;
+
+
+ public:
+
+ /** The length as an enumerated value. */
+ enum { array_size = -1 };
+
+
+ public:
+
+ external_1D(pointer const ptr, size_t size)
+ : m_data(ptr), m_size(size) {}
+
+
+ public:
+
+ /** Return the number of elements in the array. */
+ size_t size() const { return m_size; }
+
+ /** Access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a mutable reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ reference operator[](size_t i) { return m_data[i]; }
+
+ /** Const access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a const reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ const_reference operator[](size_t i) const { return m_data[i]; }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return m_data; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return m_data; }
+
+
+ protected:
+
+ pointer const m_data;
+ const size_t m_size;
+
+
+ private:
+
+ /* Initialization without an argument isn't allowed: */
+ external_1D();
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Defines the fixed-size and runtime-sized external 2D arrays.
+ *
+ * @todo Would casting get better performance in the external_2D<> element
+ * access methods?
+ */
+
+#ifndef external_2D_h
+#define external_2D_h
+
+#include <cml/core/common.h>
+#include <cml/core/fixed_1D.h>
+#include <cml/core/fixed_2D.h>
+#include <cml/core/dynamic_1D.h>
+#include <cml/core/dynamic_2D.h>
+#include <cml/external.h>
+
+namespace cml {
+
+/** Fixed-size external 2D array.
+ *
+ * Both the memory and the size are fixed at compile time, and cannot be
+ * changed.
+ */
+template<typename Element, int Rows, int Cols, typename Layout>
+class external_2D
+{
+ public:
+
+ /* Require Rows > 0, Cols > 0: */
+ CML_STATIC_REQUIRE((Rows > 0) && (Cols > 0));
+
+ /* Record the generator: */
+ typedef external<Rows,Cols> generator_type;
+
+ /* Standard: */
+ typedef Element value_type;
+ typedef Element* pointer;
+ typedef Element& reference;
+ typedef const Element& const_reference;
+ typedef const Element* const_pointer;
+
+ /* For matching by memory layout: */
+ typedef Layout layout;
+
+ /* For matching by memory type: */
+ typedef external_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef fixed_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef not_resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef twod_tag dimension_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef fixed_2D<Element,Cols,Rows,Layout> transposed_type;
+ /* Note: the transposed type must be fixed_2D, since an external array
+ * cannot be specified without a corresponding memory location.
+ */
+
+ /* To simplify the matrix row and column operators: */
+ typedef fixed_1D<Element,Rows> row_array_type;
+ typedef fixed_1D<Element,Cols> col_array_type;
+ /* Note: the row types must be fixed_1D, since external arrays cannot be
+ * specified without a memory location.
+ */
+
+
+ public:
+
+ enum { array_rows = Rows, array_cols = Cols };
+
+
+ public:
+
+ /** Construct an external array from a pointer. */
+ external_2D(value_type const ptr[Rows][Cols])
+ : m_data(const_cast<pointer>(&ptr[0][0])) {}
+
+ /** Construct an external array from a pointer. */
+ external_2D(value_type* const ptr) : m_data(ptr) {}
+
+
+ public:
+
+ /** Return the number of rows in the array. */
+ size_t rows() const { return size_t(array_rows); }
+
+ /** Return the number of cols in the array. */
+ size_t cols() const { return size_t(array_cols); }
+
+
+ public:
+
+ /** Access element (row,col) of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns mutable reference.
+ *
+ * @note This function does not range-check the arguments.
+ */
+ reference operator()(size_t row, size_t col) {
+ /* Dispatch to the right function based on layout: */
+ return get_element(row,col,layout());
+ }
+
+ /** Const access element (row,col) of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns const reference.
+ *
+ * @note This function does not range-check the arguments.
+ */
+ const_reference operator()(size_t row, size_t col) const {
+ /* Dispatch to the right function based on layout: */
+ return get_element(row,col,layout());
+ }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return m_data; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return m_data; }
+
+
+ protected:
+
+ /* XXX May be able to cast to get better performance? */
+ reference get_element(size_t row, size_t col, row_major) {
+ return m_data[row*Cols + col];
+ }
+
+ const_reference get_element(size_t row, size_t col, row_major) const {
+ return m_data[row*Cols + col];
+ }
+
+ reference get_element(size_t row, size_t col, col_major) {
+ return m_data[col*Rows + row];
+ }
+
+ const_reference get_element(size_t row, size_t col, col_major) const {
+ return m_data[col*Rows + row];
+ }
+
+
+ protected:
+
+ /* Declare the data array: */
+ pointer const m_data;
+};
+
+/** Run-time sized external 2D array.
+ *
+ * Both the memory and the size are fixed at run-time, but cannot be changed.
+ * This is a specialization for the case that Rows and Cols are not specified
+ * (i.e. given as the default of -1,-1).
+ */
+template<typename Element, typename Layout>
+class external_2D<Element,-1,-1,Layout>
+{
+ public:
+
+ /* Record the generator. Note: this is *not* unique, as it is the same
+ * generator used by external_1D. However, external_1D is used only by
+ * vector<> classes, so this is not a problem.
+ */
+ typedef external<> generator_type;
+
+ /* Standard: */
+ typedef Element value_type;
+ typedef Element* pointer;
+ typedef Element& reference;
+ typedef const Element& const_reference;
+ typedef const Element* const_pointer;
+
+ /* For matching by memory layout: */
+ typedef Layout layout;
+
+ /* For matching by memory type: */
+ typedef external_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef dynamic_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef not_resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef twod_tag dimension_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef dynamic_2D<Element,Layout, CML_DEFAULT_ARRAY_ALLOC>
+ transposed_type;
+
+ /* To simplify the matrix row and column operators: */
+ typedef dynamic_1D<Element, CML_DEFAULT_ARRAY_ALLOC> row_array_type;
+ typedef dynamic_1D<Element, CML_DEFAULT_ARRAY_ALLOC> col_array_type;
+
+
+ public:
+
+ enum { array_rows = -1, array_cols = -1 };
+
+
+ public:
+
+ /** Construct an external array with no size. */
+ external_2D(pointer const ptr, size_t rows, size_t cols)
+ : m_data(ptr), m_rows(rows), m_cols(cols) {}
+
+
+ public:
+
+ /** Return the number of rows in the array. */
+ size_t rows() const { return m_rows; }
+
+ /** Return the number of cols in the array. */
+ size_t cols() const { return m_cols; }
+
+
+ public:
+
+ /** Access element (row,col) of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns mutable reference.
+ *
+ * @note This function does not range-check the arguments.
+ */
+ reference operator()(size_t row, size_t col) {
+ /* Dispatch to the right function based on layout: */
+ return get_element(row,col,layout());
+ }
+
+ /** Const access element (row,col) of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns const reference.
+ *
+ * @note This function does not range-check the arguments.
+ */
+ const_reference operator()(size_t row, size_t col) const {
+ /* Dispatch to the right function based on layout: */
+ return get_element(row,col,layout());
+ }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return m_data; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return m_data; }
+
+
+ protected:
+
+ /* XXX May be able to cast to get better performance? */
+ reference get_element(size_t row, size_t col, row_major) {
+ return m_data[row*m_cols + col];
+ }
+
+ const_reference get_element(size_t row, size_t col, row_major) const {
+ return m_data[row*m_cols + col];
+ }
+
+ reference get_element(size_t row, size_t col, col_major) {
+ return m_data[col*m_rows + row];
+ }
+
+ const_reference get_element(size_t row, size_t col, col_major) const {
+ return m_data[col*m_rows + row];
+ }
+
+
+ protected:
+
+ /* Declare the data array: */
+ value_type* const m_data;
+ const size_t m_rows;
+ const size_t m_cols;
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef fixed_1D_h
+#define fixed_1D_h
+
+#include <cml/core/common.h>
+#include <cml/core/cml_meta.h>
+#include <cml/core/cml_assert.h>
+#include <cml/fixed.h>
+
+namespace cml {
+
+/** Statically-allocated array.
+ *
+ * @note This class is designed to have the same size as a C array with the
+ * same length. It's therefore possible (but not recommended!) to coerce
+ * a normal C array into a fixed_1D<> like this:
+ *
+ * typedef fixed_1D<double,10> array;
+ * double c_array[10];
+ * array& array_object = *((array*)&c_array);
+ * double e1 = array_object[1];
+ *
+ * It's also possible to do this with a pointer to an array of values (e.g. a
+ * double*), whether or not it was actually declared as a fixed C array. This
+ * is HIGHLY DISCOURAGED, though. It's relatively straightforward to implement
+ * a separate class to take a C array (or pointer) and turn it into an array
+ * object.
+ *
+ * @sa cml::fixed
+ *
+ * @internal Do <em>not</em> add the empty constructor and destructor; at
+ * least one compiler (Intel C++ 9.0) fails to optimize them away, and they
+ * aren't needed anyway here.
+ */
+template<typename Element, int Size>
+class fixed_1D
+{
+ public:
+
+ /* Require Size > 0: */
+ CML_STATIC_REQUIRE(Size > 0);
+
+ /* Record the generator: */
+ typedef fixed<Size,-1> generator_type;
+
+ /* Standard: */
+ typedef Element value_type;
+ typedef Element* pointer;
+ typedef Element& reference;
+ typedef const Element& const_reference;
+ typedef const Element* const_pointer;
+
+ /* Array implementation: */
+ typedef value_type array_impl[Size];
+
+ /* For matching by memory type: */
+ typedef fixed_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef fixed_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef not_resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef oned_tag dimension_tag;
+
+
+ public:
+
+ /** The length as an enumerated value. */
+ enum { array_size = Size };
+
+
+ public:
+
+ /** Return the number of elements in the array. */
+ size_t size() const { return size_t(array_size); }
+
+ /** Access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a mutable reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ reference operator[](size_t i) { return m_data[i]; }
+
+ /** Const access to the data as a C array.
+ *
+ * @param i a size_t index into the array.
+ * @return a const reference to the array value at i.
+ *
+ * @note This function does not range-check the argument.
+ */
+ const_reference operator[](size_t i) const { return m_data[i]; }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return &m_data[0]; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return &m_data[0]; }
+
+ protected:
+
+ fixed_1D() {}
+
+
+ protected:
+
+ array_impl m_data;
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef fixed_2D_h
+#define fixed_2D_h
+
+#include <cml/core/common.h>
+#include <cml/core/fixed_1D.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * an unknown layout argument is given:
+ */
+struct invalid_layout_type_error;
+
+/* This is used below to create a more meaningful compile-time error when
+ * a negative size is given.
+ */
+struct negative_array_size_error;
+
+namespace cml {
+
+/** The internal statically-allocated 2D-array implementation class.
+ *
+ * This uses an internal class to setup the data matrix with the proper
+ * layout. The alternative is to use a 1D array with size Rows*Cols and a
+ * multiplication to dereference an element, but it seems that compilers
+ * better optimize 2D array dereferences. This is different from
+ * dynamic_2D<>, which must use the 1D array method.
+ *
+ * @sa cml::fixed
+ *
+ * @note This class is designed to have the same size as a C array with the
+ * same dimensions. It's therefore possible (but not recommended!) to coerce
+ * a normal C array into a fixed_2D<> like this:
+ *
+ * typedef fixed_2D<double,10,10,row_major> array;
+ * double c_array[10][10];
+ * array& array_object = *((array*)&c_array);
+ * double e11 = array_object[1][1];
+ *
+ * It's also possible to do this with a pointer to an array of values (e.g. a
+ * double*), whether or not it was actually declared as a fixed C array. This
+ * is HIGHLY DISCOURAGED, though, since it's relatively straightforward to
+ * implement a separate class to take a C array (or pointer) and turn it into
+ * an array object.
+ *
+ * @internal Do <em>not</em> add the empty constructor and destructor; at
+ * least one compiler (Intel C++ 9.0) fails to optimize them away, and they
+ * aren't needed anyway here.
+ */
+template<typename Element, int Rows, int Cols, typename Layout>
+class fixed_2D
+{
+ public:
+
+ /* Require Rows > 0, Cols > 0: */
+ CML_STATIC_REQUIRE_M(
+ (Rows > 0) && (Cols > 0),
+ negative_array_size_error);
+
+ /* Require Layout to be row_major or col_major: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<Layout,row_major>::is_true
+ || same_type<Layout,col_major>::is_true),
+ invalid_layout_type_error);
+
+
+ /* Record the generator: */
+ typedef fixed<Rows,Cols> generator_type;
+
+ /* Standard: */
+ typedef Element value_type;
+ typedef Element* pointer;
+ typedef Element& reference;
+ typedef const Element& const_reference;
+ typedef const Element* const_pointer;
+
+ /* For matching by memory layout: */
+ typedef Layout layout;
+
+ /* For matching by memory type: */
+ typedef fixed_memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef fixed_size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef not_resizable_tag resizing_tag;
+
+ /* For matching by dimensions: */
+ typedef twod_tag dimension_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef fixed_2D<Element,Cols,Rows,Layout> transposed_type;
+
+ /* To simplify the matrix row and column operators: */
+ typedef fixed_1D<Element,Rows> row_array_type;
+ typedef fixed_1D<Element,Cols> col_array_type;
+
+
+ public:
+
+ enum { array_rows = Rows, array_cols = Cols };
+
+
+ public:
+
+ /** Return the number of rows in the array. */
+ size_t rows() const { return size_t(array_rows); }
+
+ /** Return the number of cols in the array. */
+ size_t cols() const { return size_t(array_cols); }
+
+
+ public:
+
+ /** Access element (row,col) of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns mutable reference.
+ *
+ * @note This function does not range-check the arguments.
+ */
+ reference operator()(size_t row, size_t col) {
+ /* Dispatch to the right function based on layout: */
+ return get_element(row,col,layout());
+ }
+
+ /** Const access element (row,col) of the matrix.
+ *
+ * @param row row of element.
+ * @param col column of element.
+ * @returns const reference.
+ *
+ * @note This function does not range-check the arguments.
+ */
+ const_reference operator()(size_t row, size_t col) const {
+ /* Dispatch to the right function based on layout: */
+ return get_element(row,col,layout());
+ }
+
+ /** Return access to the data as a raw pointer. */
+ pointer data() { return &m_data[0][0]; }
+
+ /** Return access to the data as a raw pointer. */
+ const_pointer data() const { return &m_data[0][0]; }
+
+
+ public:
+
+ fixed_2D() {}
+
+
+ protected:
+
+ reference get_element(size_t row, size_t col, row_major) {
+ return m_data[row][col];
+ }
+
+ const_reference get_element(size_t row, size_t col, row_major) const {
+ return m_data[row][col];
+ }
+
+ reference get_element(size_t row, size_t col, col_major) {
+ return m_data[col][row];
+ }
+
+ const_reference get_element(size_t row, size_t col, col_major) const {
+ return m_data[col][row];
+ }
+
+
+ protected:
+
+ /* Typedef the possible layouts: */
+ typedef Element row_major_array[Rows][Cols];
+ typedef Element col_major_array[Cols][Rows];
+
+ /* Now, select the right layout for the current matrix: */
+ typedef typename select_switch<
+ Layout, row_major, row_major_array, /* Case 1 */
+ col_major, col_major_array /* Case 2 */
+ >::result array_data;
+
+ /* Declare the data array: */
+ array_data m_data;
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Forward declarations, useful to avoid including lots of headers.
+ *
+ * @sa cml/et/array_promotions.h
+ */
+
+#ifndef core_fwd_h
+#define core_fwd_h
+
+namespace cml {
+
+/* cml/core/fixed_1D.h */
+template<typename E, int S> class fixed_1D;
+
+/* cml/core/fixed_2D.h */
+template<typename E, int R, int C, class L> class fixed_2D;
+
+/* cml/core/dynamic_1D.h */
+template<typename E, class A> class dynamic_1D;
+
+/* cml/core/dynamic_2D.h */
+template<typename E, class L, class A> class dynamic_2D;
+
+/* cml/core/external_1D.h */
+template<typename E, int S> class external_1D;
+
+/* cml/core/external_2D.h */
+template<typename E, int R, int C, class L> class external_2D;
+
+/* cml/fixed.h */
+template<int Dim1, int Dim2> struct fixed;
+
+/* cml/dynamic.h */
+template<class Alloc> struct dynamic;
+
+/* cml/external.h */
+template<int Dim1, int Dim2> struct external;
+
+/* cml/vector.h */
+template<typename E, class AT> class vector;
+
+/* cml/matrix.h */
+template<typename E, class AT, class BO, class L> class matrix;
+
+/* cml/quaternion.h */
+template<typename E, class AT, class OT, class CT> class quaternion;
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef core_meta_common_h
+#define core_meta_common_h
+
+namespace cml {
+
+/** Type of a true statement. */
+struct true_type {};
+
+/** Type of a false statement. */
+struct false_type {};
+
+template<bool B> struct is_true {
+ typedef false_type result;
+};
+
+template<> struct is_true<true> {
+ typedef true_type result;
+};
+
+/** A "type pair". */
+template<typename T1, typename T2> struct type_pair {
+ typedef T1 first;
+ typedef T2 second;
+};
+
+/** A "type quadruple". */
+template<typename T1, typename T2, typename T3, typename T4>
+struct type_quad {
+ typedef T1 first;
+ typedef T2 second;
+ typedef T3 third;
+ typedef T3 fourth;
+};
+
+/** Match any type (for use with same_type<> and select_switch<>). */
+struct any_type {};
+
+/** Determine if two types are the same.
+ *
+ * Defaults to false.
+ */
+template<typename T, typename U> struct same_type {
+ typedef false_type result;
+ enum { is_true = false, is_false = true };
+};
+
+/** Match the same type for both of same_type's template arguments. */
+template<typename T> struct same_type<T,T> {
+ typedef true_type result;
+ enum { is_true = true, is_false = false };
+};
+
+/** Match a type and any_type. */
+template<typename T> struct same_type<T,any_type> {
+ typedef true_type result;
+ enum { is_true = true, is_false = false };
+};
+
+/** Match a type and any_type. */
+template<typename T> struct same_type<any_type,T> {
+ typedef true_type result;
+ enum { is_true = true, is_false = false };
+};
+
+/** Disambiguate pair of any_type's. */
+template<> struct same_type<any_type,any_type> {
+ typedef true_type result;
+ enum { is_true = true, is_false = false };
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef meta_if_h
+#define meta_if_h
+
+#include <cml/core/meta/common.h>
+
+namespace cml {
+
+/** Select argument type based upon truth value. */
+template<bool yn, typename TrueT, typename FalseT> struct select_if;
+
+/** Result is TrueT if true. */
+template<typename TrueT, typename FalseT>
+struct select_if<true,TrueT,FalseT> {
+ typedef TrueT result;
+ enum { is_true = true };
+};
+
+/** Result is FalseT if false. */
+template<typename TrueT, typename FalseT>
+struct select_if<false,TrueT,FalseT> {
+ typedef FalseT result;
+ enum { is_true = false };
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef meta_switch_h
+#define meta_switch_h
+
+#include <cml/core/meta/common.h>
+#include <cml/core/meta/if.h>
+
+namespace cml {
+
+struct NilCase {}; /* For terminating the case list. */
+struct Default {}; /* For indicating the default result. */
+
+/* The working parts of the meta-switch go into namespace meta: */
+namespace meta {
+
+/* "Interior" case statements: */
+template<typename Case, typename Result, typename NextCase>
+struct select_case
+{
+ template<typename Find> struct match {
+ typedef typename select_if<
+ same_type<Find,Case>::is_true,
+ Result,
+ typename NextCase::template match<Find>::result
+ >::result result;
+ };
+};
+
+/* Default case, returned when no match is found in a previous case: */
+template<typename Result>
+struct select_case<Default,Result,NilCase>
+{
+ template<typename Find> struct match {
+ typedef Result result;
+ };
+};
+
+/* The last case statement (if no match until now, the result is 'void'): */
+template<typename Case, typename Result>
+struct select_case<Case,Result,NilCase>
+{
+ template<typename Find> struct match {
+ typedef typename select_if<
+ same_type<Find,Case>::is_true,
+ Result,
+ void
+ >::result result;
+ };
+};
+
+} // namespace meta
+
+/** Return the matched type (like a switch/case statement).
+ *
+ * This is a convenience wrapper to avoid having to explicitly type out
+ * select_case for each case in the list of types to match against.
+ */
+template<typename Find
+, typename T1, typename R1
+, typename T2 = NilCase, typename R2 = void
+, typename T3 = NilCase, typename R3 = void
+, typename T4 = NilCase, typename R4 = void
+, typename T5 = NilCase, typename R5 = void
+, typename T6 = NilCase, typename R6 = void
+, typename T7 = NilCase, typename R7 = void
+, typename T8 = NilCase, typename R8 = void
+, typename T9 = NilCase, typename R9 = void
+, typename T10 = NilCase, typename R10 = void
+, typename T11 = NilCase, typename R11 = void
+, typename T12 = NilCase, typename R12 = void
+, typename T13 = NilCase, typename R13 = void
+, typename T14 = NilCase, typename R14 = void
+, typename T15 = NilCase, typename R15 = void
+, typename T16 = NilCase, typename R16 = void
+#if !defined(_MSC_VER)
+, typename T17 = NilCase, typename R17 = void
+, typename T18 = NilCase, typename R18 = void
+, typename T19 = NilCase, typename R19 = void
+, typename T20 = NilCase, typename R20 = void
+, typename T21 = NilCase, typename R21 = void
+, typename T22 = NilCase, typename R22 = void
+, typename T23 = NilCase, typename R23 = void
+, typename T24 = NilCase, typename R24 = void
+, typename T25 = NilCase, typename R25 = void
+, typename T26 = NilCase, typename R26 = void
+, typename T27 = NilCase, typename R27 = void
+, typename T28 = NilCase, typename R28 = void
+, typename T29 = NilCase, typename R29 = void
+, typename T30 = NilCase, typename R30 = void
+, typename T31 = NilCase, typename R31 = void
+, typename T32 = NilCase, typename R32 = void
+, typename T33 = NilCase, typename R33 = void
+, typename T34 = NilCase, typename R34 = void
+, typename T35 = NilCase, typename R35 = void
+, typename T36 = NilCase, typename R36 = void
+, typename T37 = NilCase, typename R37 = void
+, typename T38 = NilCase, typename R38 = void
+, typename T39 = NilCase, typename R39 = void
+, typename T40 = NilCase, typename R40 = void
+#endif
+> struct select_switch
+{
+ typedef typename
+ meta::select_case< T1,R1
+ , meta::select_case< T2,R2
+ , meta::select_case< T3,R3
+ , meta::select_case< T4,R4
+ , meta::select_case< T5,R5
+ , meta::select_case< T6,R6
+ , meta::select_case< T7,R7
+ , meta::select_case< T8,R8
+ , meta::select_case< T9,R9
+ , meta::select_case< T10,R10
+ , meta::select_case< T11,R11
+ , meta::select_case< T12,R12
+ , meta::select_case< T13,R13
+ , meta::select_case< T14,R14
+ , meta::select_case< T15,R15
+ , meta::select_case< T16,R16
+#if !defined(_MSC_VER)
+ , meta::select_case< T17,R17
+ , meta::select_case< T18,R18
+ , meta::select_case< T19,R19
+ , meta::select_case< T20,R20
+ , meta::select_case< T21,R21
+ , meta::select_case< T22,R22
+ , meta::select_case< T23,R23
+ , meta::select_case< T24,R24
+ , meta::select_case< T25,R25
+ , meta::select_case< T26,R26
+ , meta::select_case< T27,R27
+ , meta::select_case< T28,R28
+ , meta::select_case< T29,R29
+ , meta::select_case< T30,R30
+ , meta::select_case< T31,R31
+ , meta::select_case< T32,R32
+ , meta::select_case< T33,R33
+ , meta::select_case< T34,R34
+ , meta::select_case< T35,R35
+ , meta::select_case< T36,R36
+ , meta::select_case< T37,R37
+ , meta::select_case< T38,R38
+ , meta::select_case< T39,R39
+ , meta::select_case< T40,R40
+ , NilCase
+ > > > > > > > > > > /* 10 */
+ > > > > > > > > > > /* 10 */
+ > > > > /* 4 */
+#else
+ , NilCase
+#endif
+ > > > > > > /* 6 */
+ > > > > > > > > > > /* 10 */
+ ::template match<Find>::result result;
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Default values for certain parameters.
+ */
+
+#ifndef defaults_h
+#define defaults_h
+
+#if defined(_MSC_VER)
+
+#if _MSC_VER >= 1400
+
+/* Ignore "C4003: not enough actual parameters for macro": */
+#pragma warning (disable: 4003)
+
+/* This one is odd, but apparently harmless (but should be fixed!):
+ * "C4348: redefinition of default parameter"
+ */
+#pragma warning (disable: 4348)
+
+#endif
+
+#endif
+
+/* The default vector unroll limit: */
+#if !defined(CML_VECTOR_UNROLL_LIMIT)
+#define CML_VECTOR_UNROLL_LIMIT 8
+#endif
+
+/* Don't unroll matrix operations by default: */
+#if !defined(CML_2D_UNROLLER) && !defined(CML_NO_2D_UNROLLER)
+#define CML_NO_2D_UNROLLER
+#endif
+
+/* The default vector dot() unroll limit: */
+#if !defined(CML_VECTOR_DOT_UNROLL_LIMIT)
+#define CML_VECTOR_DOT_UNROLL_LIMIT CML_VECTOR_UNROLL_LIMIT
+#endif
+
+/* The default array layout is the C/C++ row-major array layout: */
+#if !defined(CML_DEFAULT_ARRAY_LAYOUT)
+#define CML_DEFAULT_ARRAY_LAYOUT cml::row_major
+#endif
+
+/* The default basis orientation: */
+#if !defined(CML_DEFAULT_BASIS_ORIENTATION)
+#define CML_DEFAULT_BASIS_ORIENTATION cml::col_basis
+#endif
+
+/* Always use the default layout in promotions, by default: */
+#if !defined(CML_ALWAYS_PROMOTE_TO_DEFAULT_LAYOUT)
+#define CML_ALWAYS_PROMOTE_TO_DEFAULT_LAYOUT
+#endif
+
+/* The default memory allocator is std::allocator<void>: */
+#if !defined(CML_DEFAULT_ARRAY_ALLOC)
+#include <memory> // for std::allocator
+#define CML_DEFAULT_ARRAY_ALLOC std::allocator<void>
+#endif
+
+/* By default, automatically resize dynamic vectors and matrices: */
+#if !defined(CML_AUTOMATIC_VECTOR_RESIZE_ON_ASSIGNMENT)
+#define CML_AUTOMATIC_VECTOR_RESIZE_ON_ASSIGNMENT
+#endif
+
+#if !defined(CML_AUTOMATIC_MATRIX_RESIZE_ON_ASSIGNMENT)
+#define CML_AUTOMATIC_MATRIX_RESIZE_ON_ASSIGNMENT
+#endif
+
+/* By default, check vector and matrix sizes: */
+#if !defined(CML_CHECK_VECTOR_EXPR_SIZES)
+#define CML_CHECK_VECTOR_EXPR_SIZES
+#endif
+
+#if !defined(CML_CHECK_MATRIX_EXPR_SIZES)
+#define CML_CHECK_MATRIX_EXPR_SIZES
+#endif
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef dynamic_h
+#define dynamic_h
+
+#include <cml/defaults.h>
+
+namespace cml {
+
+/** This is a selector for dynamic 1D and 2D arrays.
+ *
+ * The dynamic<> struct has no implementation; it is used only to select a
+ * 1D or 2D array type as the base class of a vector or matrix.
+ *
+ * @sa fixed
+ * @sa external
+ */
+template<class Alloc = CML_DEFAULT_ARRAY_ALLOC> struct dynamic;
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Defines promotions between array types.
+ *
+ * @todo Can/should an expression with a fixed-size argument promote to a
+ * fixed array instead of a dynamic array?
+ */
+
+#ifndef array_promotions_h
+#define array_promotions_h
+
+#include <cml/core/cml_meta.h>
+#include <cml/et/scalar_promotions.h>
+
+namespace cml {
+namespace et {
+
+#define VAL_MAX(_a_,_b_) ( ((_a_)>(_b_))?(_a_):(_b_) )
+
+namespace detail {
+
+/* This is specialized for 1D and 2D promotions: */
+template<class A1, class A2, typename DTag1, typename DTag2,
+ typename PromotedSizeTag> struct promote;
+
+/* Promote 1D fixed-size arrays to a 1D fixed-size array: */
+template<class A1, class A2>
+struct promote<A1,A2,oned_tag,oned_tag,fixed_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, deduce the array size: */
+ enum { Size = VAL_MAX((size_t)A1::array_size, (size_t)A2::array_size) };
+
+ /* Finally, generate the promoted array type: */
+ typedef fixed_1D<promoted_scalar,Size> type;
+};
+
+/* Promote 1D dynamic arrays to a 1D dynamic array: */
+template<class A1, class A2>
+struct promote<A1,A2,oned_tag,oned_tag,dynamic_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, rebind to get the proper allocator: */
+ typedef typename CML_DEFAULT_ARRAY_ALLOC
+ ::rebind<promoted_scalar>::other allocator;
+
+ /* Finally, generate the promoted array type: */
+ typedef dynamic_1D<promoted_scalar,allocator> type;
+};
+
+/* Promote fixed 2D+1D array expressions to a fixed 1D array: */
+template<class A1, class A2>
+struct promote<A1,A2,twod_tag,oned_tag,fixed_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, deduce the array size: */
+ enum { Size = (size_t)A1::array_rows };
+
+ /* Finally, generate the promoted array type: */
+ typedef fixed_1D<promoted_scalar,Size> type;
+};
+
+/* Promote fixed 1D+2D array expressions to a fixed 1D array: */
+template<class A1, class A2>
+struct promote<A1,A2,oned_tag,twod_tag,fixed_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, deduce the array size: */
+ enum { Size = (size_t)A2::array_cols };
+
+ /* Finally, generate the promoted array type: */
+ typedef fixed_1D<promoted_scalar,Size> type;
+};
+
+/* Promote dynamic 2D+1D array expression to a 1D dynamic array: */
+template<class A1, class A2>
+struct promote<A1,A2,twod_tag,oned_tag,dynamic_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, rebind to get the proper allocator: */
+ typedef typename CML_DEFAULT_ARRAY_ALLOC
+ ::rebind<promoted_scalar>::other allocator;
+
+ /* Finally, generate the promoted array type: */
+ typedef dynamic_1D<promoted_scalar,allocator> type;
+};
+
+/* Promote dynamic 1D+2D array expression to a 1D dynamic array: */
+template<class A1, class A2>
+struct promote<A1,A2,oned_tag,twod_tag,dynamic_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, rebind to get the proper allocator: */
+ typedef typename CML_DEFAULT_ARRAY_ALLOC
+ ::rebind<promoted_scalar>::other allocator;
+
+ /* Finally, generate the promoted array type: */
+ typedef dynamic_1D<promoted_scalar,allocator> type;
+};
+
+
+/* This is a helper to deduce the result of a promoted 2D array: */
+template<typename LeftL, typename RightL> struct deduce_layout {
+#if defined(CML_ALWAYS_PROMOTE_TO_DEFAULT_LAYOUT)
+ typedef CML_DEFAULT_ARRAY_LAYOUT promoted_layout;
+#else
+ typedef typename select_if<
+ same_type<LeftL,RightL>::is_true, LeftL,
+ CML_DEFAULT_ARRAY_LAYOUT>::result promoted_layout;
+#endif
+};
+
+/* Promote 2D fixed-size arrays to a 2D fixed-size array. The resulting
+ * matrix has the same number of rows as A1, and the same number of
+ * columns as A2.
+ */
+template<class A1, class A2>
+struct promote<A1,A2,twod_tag,twod_tag,fixed_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, deduce the array size: */
+ enum {
+ Rows = (size_t)A1::array_rows,
+ Cols = (size_t)A2::array_cols
+ };
+
+ /* Then deduce the array layout: */
+ typedef typename A1::layout left_layout;
+ typedef typename A2::layout right_layout;
+ typedef typename deduce_layout<left_layout,right_layout>
+ ::promoted_layout promoted_layout;
+
+ /* Finally, generate the promoted array type: */
+ typedef fixed_2D<promoted_scalar,Rows,Cols,promoted_layout> type;
+};
+
+/* Promote 2D dynamic arrays to a 2D dynamic array: */
+template<class A1, class A2>
+struct promote<A1,A2,twod_tag,twod_tag,dynamic_size_tag>
+{
+ typedef typename A1::value_type left_scalar;
+ typedef typename A2::value_type right_scalar;
+
+ /* First, promote the scalar type: */
+ typedef typename ScalarPromote<
+ left_scalar,right_scalar>::type promoted_scalar;
+
+ /* Next, rebind to get the proper allocator: */
+ typedef typename CML_DEFAULT_ARRAY_ALLOC
+ ::rebind<promoted_scalar>::other allocator;
+
+ /* Then deduce the array layout: */
+ typedef typename A1::layout left_layout;
+ typedef typename A2::layout right_layout;
+ typedef typename deduce_layout<left_layout,right_layout>
+ ::promoted_layout promoted_layout;
+
+ /* Finally, generate the promoted array type: */
+ typedef dynamic_2D<promoted_scalar,promoted_layout,allocator> type;
+};
+
+} // namespace detail
+
+/** Class to promote array types.
+ *
+ * Both arguments must be array types.
+ *
+ * @sa fixed_1D
+ * @sa fixed_2D
+ * @sa dynamic_1D
+ * @sa dynamic_2D
+ */
+template<class A1, class A2>
+struct ArrayPromote
+{
+ /* Shorthand: */
+ //typedef typename A1::value_type left_scalar;
+ //typedef typename A2::value_type right_scalar;
+ typedef typename A1::dimension_tag left_dtag;
+ typedef typename A2::dimension_tag right_dtag;
+
+ /* Deduce the proper type based upon the characteristics of AT1 and
+ * AT2. This is the table of type conversions:
+ *
+ * AT1 AT2 Result
+ * memory size memory size memory size
+ *
+ * fixed fixed fixed fixed fixed fixed
+ * fixed fixed dynamic dynamic dynamic dynamic
+ * fixed fixed external fixed fixed fixed
+ * fixed fixed external dynamic dynamic dynamic
+ *
+ * dynamic dynamic fixed fixed dynamic dynamic
+ * dynamic dynamic dynamic dynamic dynamic dynamic
+ * dynamic dynamic external fixed dynamic dynamic
+ * dynamic dynamic external dynamic dynamic dynamic
+ *
+ * external fixed external fixed fixed fixed
+ * external fixed fixed fixed fixed fixed
+ * external fixed dynamic dynamic dynamic dynamic
+ * external fixed external dynamic dynamic dynamic
+ *
+ * external dynamic external fixed dynamic dynamic
+ * external dynamic fixed fixed dynamic dynamic
+ * external dynamic dynamic dynamic dynamic dynamic
+ * external dynamic external dynamic dynamic dynamic
+ *
+ * Note that if one argument is a dynamically-sized array, the result
+ * must be a dynamically allocated and sized array. Likewise, if both
+ * arguments have fixed size, the result can be a fixed-sized array.
+ */
+
+ /* Check if both arguments are fixed-size arrays. If so, the promoted
+ * array will be a fixed array, and if not, it will be a dynamic array:
+ */
+ typedef typename select_if<
+ (same_type<typename A1::size_tag, fixed_size_tag>::is_true
+ && same_type<typename A2::size_tag, fixed_size_tag>::is_true),
+ fixed_size_tag, /* True */
+ dynamic_size_tag /* False */
+ >::result promoted_size_tag;
+
+ /* Deduce the promoted type: */
+ typedef typename detail::promote<
+ A1, A2, left_dtag, right_dtag, promoted_size_tag>::type type;
+};
+
+/* Cleanup internal macros: */
+#undef VAL_MAX
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef ops_h
+#define ops_h
+
+#include <cml/et/traits.h>
+#include <cml/et/scalar_promotions.h>
+
+/** Declare a unary scalar operator, like negation. */
+#define CML_UNARY_SCALAR_OP(_op_, _op_name_) \
+template<typename ArgT> struct _op_name_ { \
+ typedef ExprTraits<ArgT> arg_traits; \
+ typedef typename arg_traits::const_reference arg_reference; \
+ typedef typename arg_traits::value_type value_type; \
+ typedef scalar_result_tag result_tag; \
+ value_type apply(arg_reference arg) const { return _op_ arg; } \
+};
+
+/** Declare a binary scalar operator, like addition, s1+s2. */
+#define CML_BINARY_SCALAR_OP(_op_, _op_name_) \
+template<typename LeftT, typename RightT> struct _op_name_ { \
+ typedef ExprTraits<LeftT> left_traits; \
+ typedef ExprTraits<RightT> right_traits; \
+ typedef typename left_traits::const_reference left_reference; \
+ typedef typename right_traits::const_reference right_reference; \
+ typedef typename left_traits::value_type left_value; \
+ typedef typename right_traits::value_type right_value; \
+ typedef typename ScalarPromote<left_value,right_value>::type value_type; \
+ typedef scalar_result_tag result_tag; \
+ value_type apply(left_reference left, right_reference right) const { \
+ return left _op_ right; } \
+};
+
+/** Declare an op-assignment operator.
+ *
+ * @note The ExprTraits for both argument types must be defined, LeftT must
+ * have an assignment operator, and ExprTraits<LeftT>::reference must specify
+ * a type that allows assignment.
+ */
+#define CML_BINARY_SCALAR_OP_ASSIGN(_op_, _op_name_) \
+template<typename LeftT, typename RightT> struct _op_name_ { \
+ typedef ExprTraits<LeftT> left_traits; \
+ typedef ExprTraits<RightT> right_traits; \
+ typedef typename left_traits::reference left_reference; \
+ typedef typename right_traits::const_reference right_reference; \
+ typedef typename left_traits::value_type left_value; \
+ typedef typename right_traits::value_type right_value; \
+ typedef typename ScalarPromote<left_value,right_value>::type value_type; \
+ typedef scalar_result_tag result_tag; \
+ value_type apply(left_reference left, right_reference right) const { \
+ return left _op_ (LeftT) right; } \
+};
+
+/** Declare a binary boolean operator, like less-than, s1 < s2.
+ *
+ * The operator should return the appropriate truth value for the operator.
+ *
+ * @note Both scalar types must have operator<() defined.
+ */
+#define CML_BOOLEAN_SCALAR_OP(_op_, _op_name_) \
+template<typename LeftT, typename RightT> struct _op_name_ { \
+ typedef ExprTraits<LeftT> left_traits; \
+ typedef ExprTraits<RightT> right_traits; \
+ typedef typename left_traits::const_reference left_reference; \
+ typedef typename right_traits::const_reference right_reference; \
+ typedef scalar_result_tag result_tag; \
+ bool apply(left_reference left, right_reference right) const { \
+ return left _op_ right; } \
+};
+
+namespace cml {
+namespace et {
+
+/* Define the operators: */
+
+/* Unary scalar ops: */
+CML_UNARY_SCALAR_OP(-, OpNeg)
+CML_UNARY_SCALAR_OP(+, OpPos)
+
+/* Binary scalar ops: */
+CML_BINARY_SCALAR_OP(+, OpAdd)
+CML_BINARY_SCALAR_OP(-, OpSub)
+CML_BINARY_SCALAR_OP(*, OpMul)
+
+#if defined(CML_RECIPROCAL_OPTIMIZATION)
+/* XXX Yikes... this should really be written out in full. *= 1./ is the
+ * "_op_" parameter to the macro (see above):
+ */
+CML_BINARY_SCALAR_OP(* value_type(1)/, OpDiv)
+#else
+CML_BINARY_SCALAR_OP(/, OpDiv)
+#endif
+
+/* Binary scalar op-assigns: */
+CML_BINARY_SCALAR_OP_ASSIGN( =, OpAssign)
+CML_BINARY_SCALAR_OP_ASSIGN(+=, OpAddAssign)
+CML_BINARY_SCALAR_OP_ASSIGN(-=, OpSubAssign)
+CML_BINARY_SCALAR_OP_ASSIGN(*=, OpMulAssign)
+
+#if defined(CML_RECIPROCAL_OPTIMIZATION)
+/* XXX Yikes... this should really be written out in full. *= 1./ is the
+ * "_op_" parameter to the macro (see above):
+ */
+CML_BINARY_SCALAR_OP_ASSIGN(*= value_type(1)/, OpDivAssign)
+#else
+CML_BINARY_SCALAR_OP_ASSIGN(/=, OpDivAssign)
+#endif
+
+/* Boolean operators for scalars: */
+CML_BOOLEAN_SCALAR_OP(==, OpEqual)
+CML_BOOLEAN_SCALAR_OP(!=, OpNotEqual)
+CML_BOOLEAN_SCALAR_OP( <, OpLess)
+CML_BOOLEAN_SCALAR_OP( >, OpGreater)
+CML_BOOLEAN_SCALAR_OP(<=, OpLessEqual)
+CML_BOOLEAN_SCALAR_OP(>=, OpGreaterEqual)
+
+#undef CML_UNARY_SCALAR_OP
+#undef CML_BINARY_SCALAR_OP
+#undef CML_BINARY_SCALAR_OP_ASSIGN
+#undef CML_BOOLEAN_SCALAR_OP
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef scalar_promotions_h
+#define scalar_promotions_h
+
+#include <cml/core/cml_meta.h>
+
+namespace cml {
+namespace et {
+
+namespace detail {
+
+/** @class IntPromote
+ * @brief Helper template to int-promote a type.
+ */
+template<class T> struct IntPromote
+{
+ /* Signed -> signed int, unsigned -> unsigned int: */
+ typedef typename select_switch<T,
+ unsigned char, unsigned int,
+ unsigned short, unsigned int,
+ signed char, int,
+ char, int,
+ short, int,
+ T, T
+ >::result result;
+};
+
+} // namespace detail
+
+/** @class ScalarPromote
+ * @brief Template for compile-time type promotion via C promotion rules.
+ */
+template<class E1_in, class E2_in> struct ScalarPromote
+{
+
+ /* Integral-promote the types (if possible). */
+ typedef typename detail::IntPromote<E1_in>::result E1;
+ typedef typename detail::IntPromote<E2_in>::result E2;
+
+ /* If sizeof(long) == sizeof(unsigned int), promote to unsigned long.
+ * Otherwise, sizeof(long) > sizeof(int), so promote to long.
+ */
+ typedef typename select_if<sizeof(long) == sizeof(unsigned int),
+ unsigned long,
+ long
+ >::result uint_promotion;
+
+ /* Do the selection on the promoted types: */
+ typedef typename select_switch<
+ type_pair<E1,E2>,
+
+#if defined(CML_USE_LONG_DOUBLE)
+ type_pair<long double,long double>, long double,
+ type_pair<long double,E2>, long double,
+ type_pair<E1,long double>, long double,
+#endif
+
+ type_pair<double,double>, double,
+ type_pair<double,E2>, double,
+ type_pair<E1,double>, double,
+
+ type_pair<float,float>, float,
+ type_pair<float,E2>, float,
+ type_pair<E1,float>, float,
+
+ type_pair<E1,E2>, void
+
+ >::result float_filter;
+
+ /* The promoted integral types really matter here: */
+ typedef typename select_switch<
+ type_pair<E1,E2>,
+
+ type_pair<unsigned long,unsigned long>, unsigned long,
+ type_pair<unsigned long,E2>, unsigned long,
+ type_pair<E1,unsigned long>, unsigned long,
+
+ type_pair<long,long>, long,
+ type_pair<long,unsigned int>, uint_promotion,
+ type_pair<unsigned int,long>, uint_promotion,
+
+ type_pair<long,E2>, long,
+ type_pair<E1,long>, long,
+
+ type_pair<unsigned int,unsigned int>, unsigned int,
+ type_pair<unsigned int,E2>, unsigned int,
+ type_pair<E1,unsigned int>, unsigned int,
+
+ type_pair<int,int>, int,
+ type_pair<int,E2>, int,
+ type_pair<E1,int>, int,
+
+ type_pair<E1,E2>, void
+
+ >::result int_filter;
+
+ /* Deduce the final type: */
+ typedef typename select_if<
+ same_type<float_filter,void>::is_true,
+ int_filter, float_filter>::result type;
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Define matrix and vector linear expression size-checking classes.
+ */
+
+#ifndef size_checking_h
+#define size_checking_h
+
+#include <stdexcept>
+#include <cml/core/cml_meta.h>
+#include <cml/core/cml_assert.h>
+#include <cml/core/fwd.h>
+#include <cml/et/traits.h>
+
+#if defined(_MSC_VER) && _MSC_VER < 1400
+#pragma warning(push)
+#pragma warning(disable:4348)
+// XXX This is a terrible hack for VC7.1, and should really be fixed by
+// separating out the "impl" templates from GetCheckedSize.
+#endif
+
+/* This is used below to create a more meaningful compile-time error when
+ * fixed-size vector arguments don't match at compile time:
+ */
+struct incompatible_expression_size_error;
+
+/* This is used below to create a more meaningful compile-time error when a
+ * function is not provided with a square matrix or MatrixExpr argument:
+ */
+struct square_matrix_arg_expected_error;
+
+namespace cml {
+namespace et {
+namespace detail {
+
+} // namespace detail
+
+/* Forward declare for specialization below: */
+template<typename LeftT, typename RightT, typename SizeT>
+ struct GetCheckedSize;
+
+/* Checking for fixed-size expression: */
+template<typename LeftT, typename RightT>
+struct GetCheckedSize<LeftT,RightT,fixed_size_tag>
+{
+ /* Record argument traits: */
+ typedef ExprTraits<LeftT> left_traits;
+ typedef ExprTraits<RightT> right_traits;
+
+ /* Result types: */
+ typedef typename left_traits::result_tag left_result;
+ typedef typename right_traits::result_tag right_result;
+
+
+ /* For specialization below: */
+ template<typename LR, typename RR, class X = void> struct impl;
+
+ /* Check for two matrices (linear operators only): */
+ template<class X> struct impl<matrix_result_tag,matrix_result_tag,X> {
+ typedef matrix_size size_type;
+ CML_STATIC_REQUIRE_M(
+ (size_t)LeftT::array_rows == (size_t)RightT::array_rows
+ && (size_t)LeftT::array_cols == (size_t)RightT::array_cols,
+ incompatible_expression_size_error);
+
+ /* Record the array size as a constant: */
+ enum {
+ array_rows = LeftT::array_rows,
+ array_cols = LeftT::array_cols
+ };
+
+ /* Return the matrix size: */
+ size_type size() const { return size_type(array_rows,array_cols); }
+ };
+
+ /* Check for a matrix and a vector: */
+ template<class X> struct impl<matrix_result_tag,vector_result_tag,X> {
+ typedef size_t size_type;
+ CML_STATIC_REQUIRE_M(
+ (size_t)LeftT::array_cols == (size_t)RightT::array_size,
+ incompatible_expression_size_error);
+
+ /* Record the array size as a constant: */
+ enum { array_size = LeftT::array_rows };
+
+ /* Return the vector size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a vector and a matrix: */
+ template<class X> struct impl<vector_result_tag,matrix_result_tag,X> {
+ typedef size_t size_type;
+ CML_STATIC_REQUIRE_M(
+ (size_t)LeftT::array_size == (size_t)RightT::array_rows,
+ incompatible_expression_size_error);
+
+ /* Record the array size as a constant: */
+ enum { array_size = RightT::array_cols };
+
+ /* Return the vector size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a matrix and a scalar: */
+ template<class X> struct impl<matrix_result_tag,scalar_result_tag,X> {
+ typedef matrix_size size_type;
+
+ /* Record the array size as a constant: */
+ enum {
+ array_rows = LeftT::array_rows,
+ array_cols = LeftT::array_cols
+ };
+
+ /* Return the matrix size: */
+ size_type size() const { return size_type(array_rows,array_cols); }
+ };
+
+ /* Check for a scalar and a matrix: */
+ template<class X> struct impl<scalar_result_tag,matrix_result_tag,X> {
+ typedef matrix_size size_type;
+
+ /* Record the array size as a constant: */
+ enum {
+ array_rows = RightT::array_rows,
+ array_cols = RightT::array_cols
+ };
+
+ /* Return the matrix size: */
+ size_type size() const { return size_type(array_rows,array_cols); }
+ };
+
+
+ /* Check for two vectors: */
+ template<class X> struct impl<vector_result_tag,vector_result_tag,X> {
+ typedef size_t size_type;
+ CML_STATIC_REQUIRE_M(
+ (size_t)LeftT::array_size == (size_t)RightT::array_size,
+ incompatible_expression_size_error);
+
+ /* Record the array size as a constant: */
+ enum { array_size = LeftT::array_size };
+
+ /* Return the vector size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a vector and a scalar: */
+ template<class X> struct impl<vector_result_tag,scalar_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Record the array size as a constant: */
+ enum { array_size = LeftT::array_size };
+
+ /* Return the vector size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a scalar and a vector: */
+ template<class X> struct impl<scalar_result_tag,vector_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Record the array size as a constant: */
+ enum { array_size = RightT::array_size };
+
+ /* Return the vector size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+
+ /* Check for two quaternions: */
+ template<class X>
+ struct impl<quaternion_result_tag,quaternion_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Record the quaternion size as a constant: */
+ enum { array_size = 4 };
+
+ /* Return the quaternion size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a quaternion and a vector: */
+ template<class X> struct impl<quaternion_result_tag,vector_result_tag,X> {
+ typedef size_t size_type;
+ CML_STATIC_REQUIRE_M(
+ RightT::array_size == 4,
+ incompatible_expression_size_error);
+
+ /* Record the quaternion size as a constant: */
+ enum { array_size = 4 };
+
+ /* Return the quaternion size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a vector and a quaternion: */
+ template<class X> struct impl<vector_result_tag,quaternion_result_tag,X> {
+ typedef size_t size_type;
+ CML_STATIC_REQUIRE_M(
+ LeftT::array_size == 4,
+ incompatible_expression_size_error);
+
+ /* Record the quaternion size as a constant: */
+ enum { array_size = 4 };
+
+ /* Return the quaternion size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a quaternion and a scalar: */
+ template<class X> struct impl<quaternion_result_tag,scalar_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Record the quaternion size as a constant: */
+ enum { array_size = 4 };
+
+ /* Return the quaternion size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Check for a scalar and a quaternion: */
+ template<class X> struct impl<scalar_result_tag,quaternion_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Record the array size as a constant: */
+ enum { array_size = 4 };
+
+ /* Return the quaternion size: */
+ size_type size() const { return size_type(array_size); }
+ };
+
+ /* Record the type of the checker: */
+ typedef impl<left_result,right_result> check_type;
+ typedef typename check_type::size_type size_type;
+
+ /* The implementation: */
+ size_type operator()(const LeftT&, const RightT&) const {
+ return check_type().size();
+ }
+};
+
+/* Checking for resizeable expression: */
+template<typename LeftT, typename RightT>
+struct GetCheckedSize<LeftT,RightT,dynamic_size_tag>
+{
+ /* Type of the size checker (for calling equal_or_fail): */
+ typedef GetCheckedSize<LeftT,RightT,dynamic_size_tag> self;
+
+ /* Record argument traits: */
+ typedef ExprTraits<LeftT> left_traits;
+ typedef ExprTraits<RightT> right_traits;
+
+ /* Result types: */
+ typedef typename left_traits::result_tag left_result;
+ typedef typename right_traits::result_tag right_result;
+
+
+ /* For specialization below: */
+ template<typename LR, typename RR, class X = void> struct impl;
+
+ /* Return the size if the same, or fail if different: */
+ template<typename V> V equal_or_fail(V left, V right) const {
+ if(left != right)
+ throw std::invalid_argument(
+ "expressions have incompatible sizes.");
+ return left;
+ }
+
+ /* Check for two matrices (linear operators only): */
+ template<class X> struct impl<matrix_result_tag,matrix_result_tag,X> {
+ typedef matrix_size size_type;
+
+ /* Return the matrix size, or fail if incompatible: */
+ size_type size(const LeftT& left, const RightT& right) const {
+#if defined(CML_CHECK_MATRIX_EXPR_SIZES)
+ return self().equal_or_fail(left.size(), right.size());
+#else
+ return left.size();
+#endif
+ }
+ };
+
+ /* Check for a matrix and a vector: */
+ template<class X> struct impl<matrix_result_tag,vector_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Return the vector size: */
+ size_type size(const LeftT& left, const RightT& right) const {
+#if defined(CML_CHECK_MATVEC_EXPR_SIZES)
+ self().equal_or_fail(left.cols(), right.size());
+#endif
+ return left.rows();
+ }
+ };
+
+ /* Check for a vector and a matrix: */
+ template<class X> struct impl<vector_result_tag,matrix_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Return the vector size: */
+ size_type size(const LeftT& left, const RightT& right) const {
+#if defined(CML_CHECK_MATVEC_EXPR_SIZES)
+ self().equal_or_fail(left.size(), right.rows());
+#endif
+ return right.cols(right);
+ }
+ };
+
+ /* Check for a matrix and a scalar: */
+ template<class X> struct impl<matrix_result_tag,scalar_result_tag,X> {
+ typedef matrix_size size_type;
+
+ /* Return the matrix size: */
+ size_type size(const LeftT& left, const RightT&) const {
+ return left.size();
+ }
+ };
+
+ /* Check for a scalar and a matrix: */
+ template<class X> struct impl<scalar_result_tag,matrix_result_tag,X> {
+ typedef matrix_size size_type;
+
+ /* Return the matrix size: */
+ size_type size(const LeftT&, const RightT& right) const {
+ return right.size();
+ }
+ };
+
+ /* Check for two vectors: */
+ template<class X> struct impl<vector_result_tag,vector_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Return the vector size: */
+ size_type size(const LeftT& left, const RightT& right) const {
+#if defined(CML_CHECK_VECTOR_EXPR_SIZES)
+ return self().equal_or_fail(left.size(), right.size());
+#else
+ return left.size();
+#endif
+ }
+ };
+
+ /* Check for a vector and a scalar: */
+ template<class X> struct impl<vector_result_tag,scalar_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Return the vector size: */
+ size_type size(const LeftT& left, const RightT&) const {
+ return left.size();
+ }
+ };
+
+ /* Check for a scalar and a vector: */
+ template<class X> struct impl<scalar_result_tag,vector_result_tag,X> {
+ typedef size_t size_type;
+
+ /* Return the vector size: */
+ size_type size(const LeftT&, const RightT& right) const {
+ return right.size();
+ }
+ };
+
+ /* Record the type of the checker: */
+ typedef impl<left_result,right_result> check_type;
+ typedef typename check_type::size_type size_type;
+
+ /* The implementation: */
+ size_type operator()(const LeftT& left, const RightT& right) const {
+ return check_type().size(left,right);
+ }
+};
+
+/** Generator for GetCheckedSize. */
+template<typename LeftT, typename RightT, typename SizeTag>
+inline typename et::GetCheckedSize<LeftT,RightT,SizeTag>::size_type
+CheckedSize(const LeftT& left, const RightT& right, SizeTag)
+{
+ return et::GetCheckedSize<LeftT,RightT,SizeTag>()(left,right);
+}
+
+/** Verify the sizes of the argument matrices for matrix multiplication.
+ *
+ * @returns a the size of the resulting matrix.
+ */
+template<typename MatT> inline size_t
+CheckedSquare(const MatT&, fixed_size_tag)
+{
+ CML_STATIC_REQUIRE_M(
+ ((size_t)MatT::array_rows == (size_t)MatT::array_cols),
+ square_matrix_arg_expected_error);
+ return (size_t)MatT::array_rows;
+}
+
+/** Verify the sizes of the argument matrices for matrix multiplication.
+ *
+ * @returns the size of the resulting matrix.
+ */
+template<typename MatT> inline size_t
+CheckedSquare(const MatT& m, dynamic_size_tag)
+{
+ matrix_size N = m.size();
+ et::GetCheckedSize<MatT,MatT,dynamic_size_tag>()
+ .equal_or_fail(N.first, N.second);
+ return N.first;
+}
+
+} // namespace et
+} // namespace cml
+
+#if defined(_MSC_VER) && _MSC_VER < 1400
+#pragma warning(pop)
+#endif
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef et_tags_h
+#define et_tags_h
+
+namespace cml {
+namespace et {
+
+/** Tag an expression as returning a scalar. */
+struct scalar_result_tag {};
+
+/** Tag an expression as returning a vector. */
+struct vector_result_tag {};
+
+/** Tag an expression as returning a matrix. */
+struct matrix_result_tag {};
+
+/** Tag an expression as returning a quaternion. */
+struct quaternion_result_tag {};
+
+/** Marker for unary expression ops. */
+struct unary_expression {};
+
+/** Marker for biary expression ops. */
+struct binary_expression {};
+
+/** Marker for expression tree operator nodes. */
+struct expr_node_tag {};
+
+/** Marker for expression tree terminals (leaves). */
+struct expr_leaf_tag {};
+
+/** Marker for assignable types. */
+struct assignable_tag {};
+
+/** Marker for assignable types. */
+struct not_assignable_tag {};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef traits_h
+#define traits_h
+
+#include <cml/et/tags.h>
+
+/* XXX This is here temporarily, should be rolled into the traits classes
+ * once it's clear how to best specify scalar args
+ */
+//#define SCALAR_ARG_TYPE const ScalarT&
+//#define ELEMENT_ARG_TYPE const Element&
+#define SCALAR_ARG_TYPE ScalarT
+#define ELEMENT_ARG_TYPE Element
+
+namespace cml {
+namespace et {
+
+/** The expression traits class.
+ *
+ * The traits class is used to provide uniform access to expression
+ * objects, including scalars, when used in vector and matrix expressions.
+ * One especially useful property for scalars is that scalars are
+ * implicitly "promoted" to vectors or scalars as necessary via the
+ * ExprTraits's get() method. Without this functionality, a separate
+ * expression tree node would be needed to hold a scalar, which would
+ * adversely affect performance.
+ *
+ * @internal This is also currently used for determining traits of scalar
+ * types from the scalar operators (+,-,etc.). Really, a separate traits
+ * class should probably be used for this (e.g. ScalarTraits).
+ */
+template<typename T> struct ExprTraits
+#if defined(CML_NO_DEFAULT_EXPR_TRAITS)
+/* For testing, don't default to scalar traits: */
+#else
+{
+ /* Standard: */
+ typedef T expr_type;
+ typedef T value_type;
+ typedef T& reference;
+ typedef T const_reference;
+ typedef scalar_result_tag result_tag;
+ typedef fixed_memory_tag memory_tag;
+ typedef unit_size_tag size_tag;
+ typedef expr_type result_type;
+ typedef expr_leaf_tag node_tag;
+
+ /** Vector-like access, just returns the value. */
+ value_type get(const_reference v, size_t) const { return v; }
+
+ /** Matrix-like access, just returns the value. */
+ value_type get(const_reference v, size_t, size_t) const { return v; }
+
+ /** Size is always 1. */
+ size_t size(const_reference) const { return 1; }
+
+ /** Size is always 1. */
+ size_t rows(double) const { return 1; }
+
+ /** Size is always 1. */
+ size_t cols(double) const { return 1; }
+}
+#endif
+;
+
+#if defined(CML_NO_DEFAULT_EXPR_TRAITS)
+template<> struct ExprTraits<double>
+{
+ /* Standard: */
+ typedef double expr_type;
+ typedef double value_type;
+ typedef double& reference;
+ typedef double const_reference;
+ typedef scalar_result_tag result_tag;
+ typedef fixed_memory_tag memory_tag;
+ typedef unit_size_tag size_tag;
+ typedef double result_type;
+ typedef expr_leaf_tag node_tag;
+
+ /** Vector-like access, just returns the value. */
+ value_type get(double v, size_t) const { return v; }
+
+ /** Matrix-like access, just returns the value. */
+ value_type get(double v, size_t, size_t) const { return v; }
+
+ /** Size is always 1. */
+ size_t size(double) const { return 1; }
+
+ /** Size is always 1. */
+ size_t rows(double) const { return 1; }
+
+ /** Size is always 1. */
+ size_t cols(double) const { return 1; }
+};
+
+template<> struct ExprTraits<float>
+{
+ /* Standard: */
+ typedef float expr_type;
+ typedef float value_type;
+ typedef float& reference;
+ typedef float const_reference;
+ typedef scalar_result_tag result_tag;
+ typedef fixed_memory_tag memory_tag;
+ typedef unit_size_tag size_tag;
+ typedef float result_type;
+ typedef expr_leaf_tag node_tag;
+
+ /** Vector-like access, just returns the value. */
+ value_type get(float v, size_t) const { return v; }
+
+ /** Matrix-like access, just returns the value. */
+ value_type get(float v, size_t, size_t) const { return v; }
+
+ /** Size is always 1. */
+ size_t size(float) const { return 1; }
+
+ /** Size is always 1. */
+ size_t rows(float) const { return 1; }
+
+ /** Size is always 1. */
+ size_t cols(float) const { return 1; }
+};
+#endif
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef external_h
+#define external_h
+
+namespace cml {
+
+/** This is a selector for external 1D and 2D arrays.
+ *
+ * The external<> struct is used only to select a 1D or 2D array as the
+ * base class of a vector or matrix. The rebind<> template is used by
+ * quaternion<> to select its vector length in a generic way.
+ *
+ * @sa fixed
+ * @sa dynamic
+ */
+template<int Dim1 = -1, int Dim2 = -1> struct external {
+
+ /** Rebind to a 1D type.
+ *
+ * This is used by quaternion<>.
+ */
+ template<int D> struct rebind { typedef external<D> other; };
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef fixed_h
+#define fixed_h
+
+namespace cml {
+
+
+/** This is a selector for fixed 1D and 2D arrays.
+ *
+ * The fixed<> struct is used only to select a 1D or 2D array as the base
+ * class of a vector or matrix. The rebind<> template is used by
+ * quaternion<> to select its vector length in a generic way.
+ *
+ * @sa dynamic
+ * @sa external
+ */
+template<int Dim1 = -1, int Dim2 = -1> struct fixed {
+
+ /** Rebind to a 1D type.
+ *
+ * This is used by quaternion<>.
+ */
+ template<int D> struct rebind { typedef fixed<D> other; };
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef checking_h
+#define checking_h
+
+#include <cml/vector/vector_expr.h>
+#include <cml/matrix/matrix_expr.h>
+#include <cml/quaternion/quaternion_expr.h>
+
+/* Run- and compile-time checking of argument types, values and sizes. */
+
+struct function_expects_vector_arg_error;
+struct function_expects_matrix_arg_error;
+struct function_expects_quaternion_arg_error;
+
+struct function_expects_2D_vector_arg_error;
+struct function_expects_3D_vector_arg_error;
+struct function_expects_4D_vector_arg_error;
+struct function_expects_2D_or_3D_vector_arg_error;
+struct function_expects_2x2_matrix_arg_error;
+struct function_expects_3x3_matrix_arg_error;
+struct function_expects_4x4_matrix_arg_error;
+struct function_expects_square_matrix_arg_error;
+
+struct matrix_arg_fails_minimum_size_requirement;
+
+namespace cml {
+namespace detail {
+
+//////////////////////////////////////////////////////////////////////////////
+// Vector argument checking
+//////////////////////////////////////////////////////////////////////////////
+
+/** Compile-time check for a vector argument */
+template< class VecT > inline void
+CheckVec(const VecT&)
+{
+ typedef et::ExprTraits<VecT> vector_traits;
+ typedef typename vector_traits::result_tag result_type;
+
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type, et::vector_result_tag>::is_true),
+ function_expects_vector_arg_error);
+}
+
+/** Compile-time check for a vector of size N */
+template< class VecT, size_t N, class ErrorT > inline void
+CheckVecN(const VecT& v, fixed_size_tag) {
+ CheckVec(v);
+
+ CML_STATIC_REQUIRE_M(((size_t)VecT::array_size == N), ErrorT);
+}
+
+/** Run-time check for a vector of size N */
+template< class VecT, size_t N, class /*ErrorT*/ > inline void
+CheckVecN(const VecT& v, dynamic_size_tag) {
+ CheckVec(v);
+
+ et::GetCheckedSize<VecT,VecT,dynamic_size_tag>()
+ .equal_or_fail(v.size(),size_t(N));
+}
+
+/** Check for a vector of size N */
+template< class VecT, size_t N, class ErrorT > inline void
+CheckVecN(const VecT& v) {
+ typedef et::ExprTraits<VecT> vector_traits;
+ typedef typename vector_traits::size_tag size_tag;
+
+ detail::CheckVecN<VecT,N,ErrorT>(v, size_tag());
+}
+
+/** Check for a vector of size 2 */
+template< class VecT > inline void
+CheckVec2(const VecT& v) {
+ detail::CheckVecN<VecT,2,function_expects_2D_vector_arg_error>(v);
+}
+
+/** Check for a vector of size 3 */
+template< class VecT > inline void
+CheckVec3(const VecT& v) {
+ detail::CheckVecN<VecT,3,function_expects_3D_vector_arg_error>(v);
+}
+
+/** Check for a vector of size 4 */
+template< class VecT > inline void
+CheckVec4(const VecT& v) {
+ CheckVecN<VecT,4,function_expects_4D_vector_arg_error>(v);
+}
+
+/** Compile-time check for a vector of size 2 or 3 */
+template< class VecT > inline void
+CheckVec2Or3(const VecT& v, fixed_size_tag) {
+ CheckVec(v);
+
+ CML_STATIC_REQUIRE_M(
+ (VecT::array_size == 2 || VecT::array_size == 3),
+ function_expects_2D_or_3D_vector_arg_error);
+}
+
+/** Run-time check for a vector of size 2 or 3 */
+template< class VecT > inline void
+CheckVec2Or3(const VecT& v, dynamic_size_tag) {
+ CheckVec(v);
+
+ if (v.size() != 2 && v.size() != 3) {
+ throw std::invalid_argument("2d or 3d vector arg expected");
+ }
+}
+
+/** Check for a vector of size 2 or 3 */
+template< class VecT > inline void
+CheckVec2Or3(const VecT& v) {
+ typedef et::ExprTraits<VecT> vector_traits;
+ typedef typename vector_traits::size_tag size_tag;
+
+ detail::CheckVec2Or3(v, size_tag());
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Matrix argument checking
+//////////////////////////////////////////////////////////////////////////////
+
+/** Compile-time check for a matrix argument */
+template< class MatT > inline void
+CheckMat(const MatT&)
+{
+ typedef et::ExprTraits<MatT> matrix_traits;
+ typedef typename matrix_traits::result_tag result_type;
+
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type, et::matrix_result_tag>::is_true),
+ function_expects_matrix_arg_error);
+}
+
+/** Compile-time check for a matrix of size NxM */
+template< class MatT, size_t N, size_t M, class ErrorT > inline void
+CheckMatNxM(const MatT& m, fixed_size_tag) {
+ CheckMat(m);
+
+ CML_STATIC_REQUIRE_M(
+ (MatT::array_rows == N && MatT::array_cols == M), ErrorT);
+}
+
+/** Run-time check for a matrix of size NxM */
+template< class MatT, size_t N, size_t M, class /*ErrorT*/ > inline void
+CheckMatNxM(const MatT& m, dynamic_size_tag) {
+ CheckMat(m);
+
+ et::GetCheckedSize<MatT,MatT,dynamic_size_tag>()
+ .equal_or_fail(m.rows(),N);
+ et::GetCheckedSize<MatT,MatT,dynamic_size_tag>()
+ .equal_or_fail(m.cols(),M);
+}
+
+/** Check for a matrix of size NxM */
+template< class MatT, size_t N, size_t M, class ErrorT > inline void
+CheckMatNxM(const MatT& m) {
+ typedef et::ExprTraits<MatT> matrix_traits;
+ typedef typename matrix_traits::size_tag size_tag;
+
+ CheckMatNxM<MatT,N,M,ErrorT>(m, size_tag());
+}
+
+/** Check for a square matrix of size NxN */
+template< class MatT, size_t N, class ErrorT > inline void
+CheckMatN(const MatT& m) {
+ CheckMatNxM<MatT,N,N,ErrorT>(m);
+}
+
+/** Check for a square matrix of size 2x2 */
+template< class MatT > inline void
+CheckMat2x2(const MatT& m) {
+ CheckMatN<MatT,2,function_expects_2x2_matrix_arg_error>(m);
+}
+
+/** Check for a square matrix of size 3x3 */
+template< class MatT > inline void
+CheckMat3x3(const MatT& m) {
+ CheckMatN<MatT,3,function_expects_3x3_matrix_arg_error>(m);
+}
+
+/** Check for a square matrix of size 4x4 */
+template< class MatT > inline void
+CheckMat4x4(const MatT& m) {
+ CheckMatN<MatT,4,function_expects_4x4_matrix_arg_error>(m);
+}
+
+/** Compile-time check for a matrix with minimum dimensions NxM */
+template< class MatT, size_t N, size_t M, class ErrorT > inline void
+CheckMatMinNxM(const MatT& m, fixed_size_tag) {
+ CheckMat(m);
+
+ CML_STATIC_REQUIRE_M(
+ (MatT::array_rows >= N && MatT::array_cols >= M), ErrorT);
+}
+
+/** Run-time check for a matrix with minimum dimensions NxM */
+template< class MatT, size_t N, size_t M, class /*ErrorT*/ > inline void
+CheckMatMinNxM(const MatT& m, dynamic_size_tag) {
+ CheckMat(m);
+
+ if (m.rows() < N || m.cols() < M) {
+ throw std::invalid_argument(
+ "matrix does not meet minimum size requirement");
+ }
+}
+
+/** Check for a matrix with minimum dimensions NxM */
+template< class MatT, size_t N, size_t M, class ErrorT > inline void
+CheckMatMinNxM(const MatT& m) {
+ typedef et::ExprTraits<MatT> matrix_traits;
+ typedef typename matrix_traits::size_tag size_tag;
+
+ CheckMatMinNxM<MatT,N,M,ErrorT>(m, size_tag());
+}
+
+/** Check for a matrix with minimum dimensions NxN */
+template< class MatT, size_t N, class ErrorT > inline void
+CheckMatMinN(const MatT& m) {
+ CheckMatMinNxM<MatT,N,N,ErrorT>(m);
+}
+
+/** Check for a matrix with minimum dimensions 2x2 */
+template< class MatT > inline void
+CheckMatMin2x2(const MatT& m) {
+ CheckMatMinN<MatT,2,matrix_arg_fails_minimum_size_requirement>(m);
+}
+
+/** Check for a matrix with minimum dimensions 3x3 */
+template< class MatT > inline void
+CheckMatMin3x3(const MatT& m) {
+ CheckMatMinN<MatT,3,matrix_arg_fails_minimum_size_requirement>(m);
+}
+
+/** Check for a matrix with minimum dimensions 4x4 */
+template< class MatT > inline void
+CheckMatMin4x4(const MatT& m) {
+ CheckMatMinN<MatT,4,matrix_arg_fails_minimum_size_requirement>(m);
+}
+
+/** Check for a matrix that can represent a 3D linear transform */
+template< class MatT > inline void
+CheckMatLinear3D(const MatT& m) {
+ CheckMatMin3x3(m);
+}
+
+/** Check for a matrix that can represent a 2D linear transform */
+template< class MatT > inline void
+CheckMatLinear2D(const MatT& m) {
+ CheckMatMin2x2(m);
+}
+
+/** Check for a matrix that can represent a 3D row-basis affine transform */
+template< class MatT > inline void
+CheckMatAffine3D(const MatT& m, row_basis) {
+ CheckMatMinNxM<MatT,4,3,matrix_arg_fails_minimum_size_requirement>(m);
+}
+
+/** Check for a matrix that can represent a 3D col-basis affine transform */
+template< class MatT > inline void
+CheckMatAffine3D(const MatT& m, col_basis) {
+ CheckMatMinNxM<MatT,3,4,matrix_arg_fails_minimum_size_requirement>(m);
+}
+
+/** Check for a matrix that can represent a 2D row-basis affine transform */
+template< class MatT > inline void
+CheckMatAffine2D(const MatT& m, row_basis) {
+ CheckMatMinNxM<MatT,3,2,matrix_arg_fails_minimum_size_requirement>(m);
+}
+
+/** Check for a matrix that can represent a 2D col-basis affine transform */
+template< class MatT > inline void
+CheckMatAffine2D(const MatT& m, col_basis) {
+ CheckMatMinNxM<MatT,2,3,matrix_arg_fails_minimum_size_requirement>(m);
+}
+
+/** Check for a matrix that can represent a 3D affine transform */
+template< class MatT > inline void
+CheckMatAffine3D(const MatT& m) {
+ CheckMatAffine3D(m, typename MatT::basis_orient());
+}
+
+/** Check for a matrix that can represent a 2D affine transform */
+template< class MatT > inline void
+CheckMatAffine2D(const MatT& m) {
+ CheckMatAffine2D(m, typename MatT::basis_orient());
+}
+
+/** Check for a matrix that can represent a 3D homogenous transform */
+template< class MatT > inline void
+CheckMatHomogeneous3D(const MatT& m) {
+ CheckMatMin4x4(m);
+}
+
+/** Compile-time check for a square matrix */
+template< class MatT, class ErrorT> inline void
+CheckMatSquare(const MatT& m, fixed_size_tag) {
+ CheckMat(m);
+
+ CML_STATIC_REQUIRE_M(
+ (MatT::array_rows == MatT::array_cols), ErrorT);
+}
+
+/** Run-time check for a square matrix */
+template< class MatT, class /*ErrorT*/ > inline void
+CheckMatSquare(const MatT& m, dynamic_size_tag) {
+ CheckMat(m);
+
+ if (m.rows() != m.cols()) {
+ throw std::invalid_argument(
+ "function expects square matrix as argument");
+ }
+}
+
+/** Check for a square matrix */
+template< class MatT > inline void
+CheckMatSquare(const MatT& m) {
+ typedef et::ExprTraits<MatT> matrix_traits;
+ typedef typename matrix_traits::size_tag size_tag;
+
+ detail::CheckMatSquare<
+ MatT,function_expects_square_matrix_arg_error>(m, size_tag());
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Quaternion argument checking
+//////////////////////////////////////////////////////////////////////////////
+
+/** Compile-time check for a quaternion argument*/
+template< class QuatT > inline void
+CheckQuat(const QuatT& /*q*/)
+{
+ typedef et::ExprTraits<QuatT> quaternion_traits;
+ typedef typename quaternion_traits::result_tag result_type;
+
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type, et::quaternion_result_tag>::is_true),
+ function_expects_quaternion_arg_error);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Index argument checking
+//////////////////////////////////////////////////////////////////////////////
+
+/** Run-time check for a valid argument */
+inline void CheckValidArg(bool valid)
+{
+ if (!valid) {
+ throw std::invalid_argument("invalid function argument");
+ }
+}
+
+/** Check for a valid integer index with value < N */
+template < size_t N >
+inline void CheckIndexN(size_t index) {
+ CheckValidArg(index < N);
+}
+
+/** Check for a valid integer index with value < 2 */
+inline void CheckIndex2(size_t index) {
+ CheckIndexN<2>(index);
+}
+
+/** Check for a valid integer index with value < 3 */
+inline void CheckIndex3(size_t index) {
+ CheckIndexN<3>(index);
+}
+
+} // namespace detail
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef coord_conversion_h
+#define coord_conversion_h
+
+#include <cml/mathlib/checking.h>
+#include <cml/mathlib/epsilon.h>
+#include <cml/mathlib/helper.h>
+
+/* Functions for converting between Cartesian, polar, cylindrical and
+ * spherical coordinates.
+ *
+ * The 3D conversion functions take an integer axis index argument. For
+ * cylindrical coordinates this determines the axis of the cylinder, and for
+ * spherical it determines which cardinal axis is normal to the azimuth plane.
+ *
+ * For spherical coordinates the option of whether to treat phi as latitude
+ * or colatitude is also available. The 'type' argument takes either of the
+ * enumerants cml::latitude and cml::colatitude to reflect this.
+ */
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// Conversion to Cartesian coordinates
+//////////////////////////////////////////////////////////////////////////////
+
+/* Convert cylindrical coordinates to Cartesian coordinates in R3 */
+template < typename E, class A > void
+cylindrical_to_cartesian(
+ E radius, E theta, E height, size_t axis, vector<E,A>& v)
+{
+ typedef vector<E,A> vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec3(v);
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ v[i] = height;
+ v[j] = std::cos(theta) * radius;
+ v[k] = std::sin(theta) * radius;
+}
+
+/* Convert spherical coordinates to Cartesian coordinates in R3 */
+template < typename E, class A > void
+spherical_to_cartesian(E radius, E theta, E phi, size_t axis,
+ SphericalType type, vector<E,A>& v)
+{
+ typedef vector<E,A> vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec3(v);
+ detail::CheckIndex3(axis);
+
+ if (type == latitude) {
+ phi = constants<value_type>::pi_over_2() - phi;
+ }
+
+ value_type sin_phi = std::sin(phi);
+ value_type cos_phi = std::cos(phi);
+ value_type sin_phi_r = sin_phi * radius;
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ v[i] = cos_phi * radius;
+ v[j] = sin_phi_r * std::cos(theta);
+ v[k] = sin_phi_r * std::sin(theta);
+}
+
+/* Convert polar coordinates to Cartesian coordinates in R2 */
+template < typename E, class A > void
+polar_to_cartesian(E radius, E theta, vector<E,A>& v)
+{
+ /* Checking handled by set() */
+ v.set(std::cos(theta) * double(radius), std::sin(theta) * double(radius));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Conversion from Cartesian coordinates
+//////////////////////////////////////////////////////////////////////////////
+
+/* Convert Cartesian coordinates to cylindrical coordinates in R3 */
+template < class VecT, typename Real > void
+cartesian_to_cylindrical(const VecT& v, Real& radius, Real& theta,
+ Real& height, size_t axis, Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef Real value_type;
+
+ /* Checking */
+ detail::CheckVec3(v);
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ radius = length(v[j],v[k]);
+ theta = radius < tolerance ? value_type(0) : std::atan2(v[k],v[j]);
+ height = v[i];
+}
+
+/* Convert Cartesian coordinates to spherical coordinates in R3 */
+template < class VecT, typename Real > void
+cartesian_to_spherical(const VecT& v, Real& radius, Real& theta, Real& phi,
+ size_t axis, SphericalType type,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef Real value_type;
+
+ /* Checking */
+ detail::CheckVec3(v);
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ value_type len = length(v[j],v[k]);
+ theta = len < tolerance ? value_type(0) : std::atan2(v[k],v[j]);
+ radius = length(v[i], len);
+ if (radius < tolerance) {
+ phi = value_type(0);
+ } else {
+ phi = std::atan2(len,v[i]);
+ //phi = type.convert(phi);
+ if (type == latitude) {
+ phi = constants<value_type>::pi_over_2() - phi;
+ }
+ }
+}
+
+/* Convert Cartesian coordinates to polar coordinates in R2 */
+template < class VecT, typename Real > void
+cartesian_to_polar(const VecT& v, Real& radius, Real& theta,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef Real value_type;
+
+ /* Checking */
+ detail::CheckVec2(v);
+
+ radius = v.length();
+ theta = radius < tolerance ? value_type(0) : std::atan2(v[1],v[0]);
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef epsilon_h
+#define epsilon_h
+
+namespace cml {
+
+/* @todo: epsilon and tolerance handling.
+ *
+ * @note This is a placeholder for a more sophisticated epsilon/tolerance
+ * system.
+ */
+
+template < typename Real >
+struct epsilon
+{
+ typedef Real value_type;
+
+private:
+
+ /** For convenience */
+ typedef value_type T;
+
+public:
+
+ static T placeholder() {
+ /* Completely arbitrary placeholder value: */
+ return T(0.0001);
+ }
+};
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef frustum_h
+#define frustum_h
+
+#include <cml/mathlib/matrix_concat.h>
+#include <cml/mathlib/checking.h>
+
+namespace cml {
+
+/* @todo: plane class, and perhaps named arguments instead of an array. */
+
+/* Extract the planes of a frustum given a modelview matrix and a projection
+ * matrix with the given near z-clipping range. The planes are normalized by
+ * default, but this can be turned off with the 'normalize' argument.
+ *
+ * The planes are in ax+by+cz+d = 0 form, and are in the order:
+ * left
+ * right
+ * bottom
+ * top
+ * near
+ * far
+ */
+
+template < class MatT, typename Real > void
+extract_frustum_planes(
+ const MatT& modelview,
+ const MatT& projection,
+ Real planes[6][4],
+ ZClip z_clip,
+ bool normalize = true)
+{
+ extract_frustum_planes(
+ detail::matrix_concat_transforms_4x4(modelview,projection),
+ planes,
+ z_clip,
+ normalize
+ );
+}
+
+/* Extract the planes of a frustum from a single matrix assumed to contain any
+ * model and view transforms followed by a projection transform with the given
+ * near z-cliping range. The planes are normalized by default, but this can be
+ * turned off with the 'normalize' argument.
+ *
+ * The planes are in ax+by+cz+d = 0 form, and are in the order:
+ * left
+ * right
+ * bottom
+ * top
+ * near
+ * far
+ */
+
+template < class MatT, typename Real > void
+extract_frustum_planes(
+ const MatT& m,
+ Real planes[6][4],
+ ZClip z_clip,
+ bool normalize = true)
+{
+ detail::CheckMatHomogeneous3D(m);
+
+ /* Left: [03+00, 13+10, 23+20, 33+30] */
+
+ planes[0][0] = m.basis_element(0,3) + m.basis_element(0,0);
+ planes[0][1] = m.basis_element(1,3) + m.basis_element(1,0);
+ planes[0][2] = m.basis_element(2,3) + m.basis_element(2,0);
+ planes[0][3] = m.basis_element(3,3) + m.basis_element(3,0);
+
+ /* Right: [03-00, 13-10, 23-20, 33-30] */
+
+ planes[1][0] = m.basis_element(0,3) - m.basis_element(0,0);
+ planes[1][1] = m.basis_element(1,3) - m.basis_element(1,0);
+ planes[1][2] = m.basis_element(2,3) - m.basis_element(2,0);
+ planes[1][3] = m.basis_element(3,3) - m.basis_element(3,0);
+
+ /* Bottom: [03+01, 13+11, 23+21, 33+31] */
+
+ planes[2][0] = m.basis_element(0,3) + m.basis_element(0,1);
+ planes[2][1] = m.basis_element(1,3) + m.basis_element(1,1);
+ planes[2][2] = m.basis_element(2,3) + m.basis_element(2,1);
+ planes[2][3] = m.basis_element(3,3) + m.basis_element(3,1);
+
+ /* Top: [03-01, 13-11, 23-21, 33-31] */
+
+ planes[3][0] = m.basis_element(0,3) - m.basis_element(0,1);
+ planes[3][1] = m.basis_element(1,3) - m.basis_element(1,1);
+ planes[3][2] = m.basis_element(2,3) - m.basis_element(2,1);
+ planes[3][3] = m.basis_element(3,3) - m.basis_element(3,1);
+
+ /* Far: [03-02, 13-12, 23-22, 33-32] */
+
+ planes[5][0] = m.basis_element(0,3) - m.basis_element(0,2);
+ planes[5][1] = m.basis_element(1,3) - m.basis_element(1,2);
+ planes[5][2] = m.basis_element(2,3) - m.basis_element(2,2);
+ planes[5][3] = m.basis_element(3,3) - m.basis_element(3,2);
+
+ /* Near: [03+02, 13+12, 23+22, 33+32] : [02, 12, 22, 32] */
+
+ if (z_clip == z_clip_neg_one) {
+ planes[4][0] = m.basis_element(0,3) + m.basis_element(0,2);
+ planes[4][1] = m.basis_element(1,3) + m.basis_element(1,2);
+ planes[4][2] = m.basis_element(2,3) + m.basis_element(2,2);
+ planes[4][3] = m.basis_element(3,3) + m.basis_element(3,2);
+ } else { // z_clip == z_clip_zero
+ planes[4][0] = m.basis_element(0,2);
+ planes[4][1] = m.basis_element(1,2);
+ planes[4][2] = m.basis_element(2,2);
+ planes[4][3] = m.basis_element(3,2);
+ }
+
+ /* @todo: This will be handled by the plane class */
+ if (normalize) {
+ for (size_t i = 0; i < 6; ++i) {
+ Real invl = inv_sqrt(planes[i][0] * planes[i][0] +
+ planes[i][1] * planes[i][1] +
+ planes[i][2] * planes[i][2]);
+
+ planes[i][0] *= invl;
+ planes[i][1] *= invl;
+ planes[i][2] *= invl;
+ planes[i][3] *= invl;
+ }
+ }
+}
+
+namespace detail {
+
+/* This is currently only in support of finding the corners of a frustum.
+ * The input planes are assumed to have a single unique intersection, so
+ * no tolerance is used.
+ */
+
+template < typename Real > vector< Real, fixed<3> >
+intersect_planes(Real p1[4], Real p2[4], Real p3[4])
+{
+ typedef vector< Real, fixed<3> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ vector_type n1(p1[0],p1[1],p1[2]);
+ vector_type n2(p2[0],p2[1],p2[2]);
+ vector_type n3(p3[0],p3[1],p3[2]);
+
+ value_type d1 = -p1[3];
+ value_type d2 = -p2[3];
+ value_type d3 = -p3[3];
+
+ vector_type numer =
+ d1*cross(n2,n3) + d2*cross(n3,n1) + d3*cross(n1,n2);
+ value_type denom = triple_product(n1,n2,n3);
+ return numer/denom;
+}
+
+} // namespace detail
+
+/* Get the corners of a frustum defined by 6 planes. The planes are in
+ * ax+by+cz+d = 0 form, and are in the order:
+ * left
+ * right
+ * bottom
+ * top
+ * near
+ * far
+ *
+ * The corners are in CCW order starting in the lower-left, first at the near
+ * plane, then at the far plane.
+ */
+
+template < typename Real, typename E, class A > void
+get_frustum_corners(Real planes[6][4], vector<E,A> corners[8])
+{
+ // NOTE: Prefixed with 'PLANE_' due to symbol conflict with Windows
+ // macros PLANE_LEFT and PLANE_RIGHT.
+ enum {
+ PLANE_LEFT,
+ PLANE_RIGHT,
+ PLANE_BOTTOM,
+ PLANE_TOP,
+ PLANE_NEAR,
+ PLANE_FAR
+ };
+
+ corners[0] = detail::intersect_planes(
+ planes[PLANE_LEFT],
+ planes[PLANE_BOTTOM],
+ planes[PLANE_NEAR]
+ );
+ corners[1] = detail::intersect_planes(
+ planes[PLANE_RIGHT],
+ planes[PLANE_BOTTOM],
+ planes[PLANE_NEAR]
+ );
+ corners[2] = detail::intersect_planes(
+ planes[PLANE_RIGHT],
+ planes[PLANE_TOP],
+ planes[PLANE_NEAR]
+ );
+ corners[3] = detail::intersect_planes(
+ planes[PLANE_LEFT],
+ planes[PLANE_TOP],
+ planes[PLANE_NEAR]
+ );
+ corners[4] = detail::intersect_planes(
+ planes[PLANE_LEFT],
+ planes[PLANE_BOTTOM],
+ planes[PLANE_FAR]
+ );
+ corners[5] = detail::intersect_planes(
+ planes[PLANE_RIGHT],
+ planes[PLANE_BOTTOM],
+ planes[PLANE_FAR]
+ );
+ corners[6] = detail::intersect_planes(
+ planes[PLANE_RIGHT],
+ planes[PLANE_TOP],
+ planes[PLANE_FAR]
+ );
+ corners[7] = detail::intersect_planes(
+ planes[PLANE_LEFT],
+ planes[PLANE_TOP],
+ planes[PLANE_FAR]
+ );
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef helper_h
+#define helper_h
+
+#include <cstddef>
+#include <cml/constants.h>
+
+namespace cml {
+
+/* Helper classes for axis order, coordinate system handedness, z-clipping
+ * range and spherical coordinate type.
+ */
+
+//////////////////////////////////////////////////////////////////////////////
+// Euler order
+//////////////////////////////////////////////////////////////////////////////
+
+enum EulerOrder {
+ euler_order_xyz, // 0x00 [0000]
+ euler_order_xyx, // 0x01 [0001]
+ euler_order_xzy, // 0x02 [0010]
+ euler_order_xzx, // 0x03 [0011]
+ euler_order_yzx, // 0x04 [0100]
+ euler_order_yzy, // 0x05 [0101]
+ euler_order_yxz, // 0x06 [0110]
+ euler_order_yxy, // 0x07 [0111]
+ euler_order_zxy, // 0x08 [1000]
+ euler_order_zxz, // 0x09 [1001]
+ euler_order_zyx, // 0x0A [1010]
+ euler_order_zyz // 0x0B [1011]
+};
+
+namespace detail {
+
+inline void unpack_euler_order(
+ EulerOrder order,
+ size_t& i,
+ size_t& j,
+ size_t& k,
+ bool& odd,
+ bool& repeat)
+{
+ enum { REPEAT = 0x01, ODD = 0x02, AXIS = 0x0C };
+
+ repeat = order & REPEAT;
+ odd = ((order & ODD) == ODD);
+ size_t offset = size_t(odd);
+ i = (order & AXIS) % 3;
+ j = (i + 1 + offset) % 3;
+ k = (i + 2 - offset) % 3;
+}
+
+} // namespace detail
+
+//////////////////////////////////////////////////////////////////////////////
+// Axis order
+//////////////////////////////////////////////////////////////////////////////
+
+enum AxisOrder {
+ axis_order_xyz = euler_order_xyz, // 0x00 [0000]
+ axis_order_xzy = euler_order_xzy, // 0x02 [0010]
+ axis_order_yzx = euler_order_yzx, // 0x04 [0100]
+ axis_order_yxz = euler_order_yxz, // 0x06 [0110]
+ axis_order_zxy = euler_order_zxy, // 0x08 [1000]
+ axis_order_zyx = euler_order_zyx, // 0x0A [1010]
+};
+
+namespace detail {
+
+inline void unpack_axis_order(
+ AxisOrder order,
+ size_t& i,
+ size_t& j,
+ size_t& k,
+ bool& odd)
+{
+ enum { ODD = 0x02, AXIS = 0x0C };
+
+ odd = ((order & ODD) == ODD);
+ size_t offset = size_t(odd);
+ i = (order & AXIS) % 3;
+ j = (i + 1 + offset) % 3;
+ k = (i + 2 - offset) % 3;
+}
+
+inline AxisOrder pack_axis_order(size_t i, bool odd) {
+ return AxisOrder((i << 2) | (size_t(odd) << 1));
+}
+
+inline AxisOrder swap_axis_order(AxisOrder order)
+{
+ size_t i, j, k;
+ bool odd;
+ unpack_axis_order(order, i, j, k, odd);
+ return pack_axis_order(j, !odd);
+}
+
+} // namespace detail
+
+//////////////////////////////////////////////////////////////////////////////
+// Axis order 2D
+//////////////////////////////////////////////////////////////////////////////
+
+enum AxisOrder2D {
+ axis_order_xy = axis_order_xyz, // 0x00 [0000]
+ axis_order_yx = axis_order_yxz, // 0x06 [0110]
+};
+
+namespace detail {
+
+inline void unpack_axis_order_2D(
+ AxisOrder2D order,
+ size_t& i,
+ size_t& j,
+ bool& odd)
+{
+ enum { ODD = 0x02, AXIS = 0x0C };
+
+ odd = ((order & ODD) == ODD);
+ size_t offset = size_t(odd);
+ i = (order & AXIS) % 3;
+ j = (i + 1 + offset) % 3;
+}
+
+} // namespace detail
+
+//////////////////////////////////////////////////////////////////////////////
+// Handedness
+//////////////////////////////////////////////////////////////////////////////
+
+enum Handedness { left_handed, right_handed };
+
+//////////////////////////////////////////////////////////////////////////////
+// Z clip
+//////////////////////////////////////////////////////////////////////////////
+
+enum ZClip { z_clip_neg_one, z_clip_zero };
+
+//////////////////////////////////////////////////////////////////////////////
+// Spherical coordinate type
+//////////////////////////////////////////////////////////////////////////////
+
+enum SphericalType { latitude, colatitude };
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef interpolation_h
+#define interpolation_h
+
+#include <cml/mathlib/matrix_rotation.h>
+
+/* Interpolation functions.
+ *
+ * @todo: This code works, but it needs a lot of cleanup.
+ */
+
+namespace cml {
+
+struct function_expects_args_of_same_type_error;
+
+namespace detail {
+
+//////////////////////////////////////////////////////////////////////////////
+// Helper struct to promote vectors, quaternions, and matrices
+//////////////////////////////////////////////////////////////////////////////
+
+template< class T1, class T2, class ResultT > struct TypePromote;
+
+template< class T >
+struct TypePromote< T,T,et::scalar_result_tag > {
+ typedef T temporary_type;
+};
+
+template< class T1, class T2 >
+struct TypePromote< T1,T2,et::scalar_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+
+ typedef typename et::ScalarPromote<T1,T2>::type temporary_type;
+};
+
+template< class T1, class T2 >
+struct TypePromote< T1,T2,et::vector_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+
+ /* @todo: This should be VectorPromote<> for symmetry with the other
+ * type promotions.
+ */
+ typedef typename CrossPromote<T1,T2>::promoted_vector temporary_type;
+};
+
+template< class T1, class T2 >
+struct TypePromote< T1,T2,et::matrix_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+
+ typedef typename et::MatrixPromote2<T1,T2>::temporary_type temporary_type;
+};
+
+template< class T1, class T2 >
+struct TypePromote< T1,T2,et::quaternion_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+
+ typedef typename et::QuaternionPromote2<T1,T2>::temporary_type
+ temporary_type;
+};
+
+template< class T1, class T2, class T3, class ResultT > struct TypePromote3;
+
+template< class T1, class T2, class T3 >
+struct TypePromote3< T1,T2,T3,et::matrix_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef et::ExprTraits<T3> traits_3;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+ typedef typename traits_3::result_tag result_type_3;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_3>::is_true),
+ function_expects_args_of_same_type_error);
+
+ typedef typename et::MatrixPromote3<T1,T2,T3>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+template< class T1, class T2, class T3 >
+struct TypePromote3< T1,T2,T3,et::quaternion_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef et::ExprTraits<T3> traits_3;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+ typedef typename traits_3::result_tag result_type_3;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_3>::is_true),
+ function_expects_args_of_same_type_error);
+
+ typedef typename et::QuaternionPromote3<T1,T2,T3>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+template <
+ class T1, class T2, class T3, class T4, class ResultT
+> struct TypePromote4;
+
+template< class T1, class T2, class T3, class T4 >
+struct TypePromote4< T1,T2,T3,T4,et::matrix_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef et::ExprTraits<T3> traits_3;
+ typedef et::ExprTraits<T4> traits_4;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+ typedef typename traits_3::result_tag result_type_3;
+ typedef typename traits_4::result_tag result_type_4;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_3>::is_true),
+ function_expects_args_of_same_type_error);
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_4>::is_true),
+ function_expects_args_of_same_type_error);
+
+ typedef typename et::MatrixPromote4<T1,T2,T3,T4>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+template< class T1, class T2, class T3, class T4 >
+struct TypePromote4< T1,T2,T3,T4,et::quaternion_result_tag > {
+ typedef et::ExprTraits<T1> traits_1;
+ typedef et::ExprTraits<T2> traits_2;
+ typedef et::ExprTraits<T3> traits_3;
+ typedef et::ExprTraits<T4> traits_4;
+ typedef typename traits_1::result_tag result_type_1;
+ typedef typename traits_2::result_tag result_type_2;
+ typedef typename traits_3::result_tag result_type_3;
+ typedef typename traits_4::result_tag result_type_4;
+
+ /* Check that results are of the same type */
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_2>::is_true),
+ function_expects_args_of_same_type_error);
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_3>::is_true),
+ function_expects_args_of_same_type_error);
+ CML_STATIC_REQUIRE_M(
+ (same_type<result_type_1, result_type_4>::is_true),
+ function_expects_args_of_same_type_error);
+
+ typedef typename et::QuaternionPromote4<T1,T2,T3,T4>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+//////////////////////////////////////////////////////////////////////////////
+// Helper functions to resize a vector, quaternion or matrix
+//////////////////////////////////////////////////////////////////////////////
+
+// Should be able to catch all no-ops with a generic function template...
+
+template < class T1, class T2, class SizeTag > void
+InterpResize(T1& t1, const T2& t2, SizeTag) {}
+
+// Catch vector and matrix resizes...
+
+template< typename E, class A, class VecT > void
+InterpResize(vector<E,A>& v, const VecT& target, dynamic_size_tag) {
+ v.resize(target.size());
+}
+
+template< typename E, class A, class B, class L, class MatT > void
+InterpResize(matrix<E,A,B,L>& m, const MatT& target, dynamic_size_tag) {
+ m.resize(target.rows(),target.cols());
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Construction of 'intermediate' quaternions and matrices for use with squad
+//////////////////////////////////////////////////////////////////////////////
+
+#if 0
+template < class QuatT_1, class QuatT_2 >
+typename et::QuaternionPromote2<QuatT_1,QuatT_2>::temporary_type
+concatenate_quaternions(
+ const QuatT_1& q1,
+ const QuatT_2& q2,
+ positive_cross)
+{
+ return q2 * q1;
+}
+
+template < class QuatT_1, class QuatT_2 >
+typename et::QuaternionPromote2<QuatT_1,QuatT_2>::temporary_type
+concatenate_quaternions(
+ const QuatT_1& q1,
+ const QuatT_2& q2,
+ negative_cross)
+{
+ return q1 * q2;
+}
+
+template< class T1, class T2, class T3, class SizeT >
+typename detail::TypePromote3<
+ T1,T2,T3,typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+squad_intermediate(
+ const T1& t1,
+ const T2& t2,
+ const T3& t3,
+ typename detail::TypePromote3<
+ T1, T2, T3, typename et::ExprTraits<T1>::result_tag
+ >::value_type tolerance,
+ et::quaternion_result_tag,
+ SizeT)
+{
+ typedef et::ExprTraits<T1> traits_1;
+ typedef typename traits_1::result_tag result_type_1;
+
+ typedef typename detail::TypePromote3<T1,T2,T3,result_type_1>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+ typedef typename temporary_type::cross_type cross_type;
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ /**
+ * NOTE: It seems that the equation for computing an intermediate
+ * quaternion produces the same results regardless of whether 'standard'
+ * or 'reverse' multiplication order is used (I haven't proved this -
+ * I've just observed it). Still, just to be sure I've used a pair of
+ * helper functions to ensure that the quaternions are multiplied in the
+ * right order.
+ */
+
+ temporary_type result;
+ detail::InterpResize(result, t1, size_tag());
+
+ temporary_type t2_inverse = conjugate(t2);
+ temporary_type temp1 = concatenate_quaternions(t1, t2_inverse, cross_type());
+ temporary_type temp2 = concatenate_quaternions(t3, t2_inverse, cross_type());
+ result = concatenate_quaternions(
+ exp(-(log(temp1) + log(temp2)) * value_type(.25)), t2, cross_type());
+ return result;
+}
+
+/**
+ * NOTE: Construction of intermediate rotation matrices for use with squad
+ * is currently implemented in terms of quaternions. This is pretty
+ * inefficient (especially so in the 2-d case, which involves jumping through
+ * a lot of hoops to get to 3-d and back), and is inelegant as well.
+ *
+ * I imagine this could be streamlined to work directly with the matrices, but
+ * I'd need to dig a bit first (figure out the matrix equivalents of
+ * quaternion exp() and log(), figure out what shortcuts can be taken in
+ * 2-d, etc.), so for now it'll just have to remain as-is.
+ *
+ * In future versions of the CML, it might also be worth reconsidering
+ * whether it's wise to support slerp and squad for matrices. Although it
+ * can be done, it's not efficient, and may give the user a false sense of
+ * security with respect to the efficiency of the underlying operations.
+ */
+
+template< class MatT_1, class MatT_2, class MatT_3, size_t N >
+struct squad_intermediate_f;
+
+template< class MatT_1, class MatT_2, class MatT_3 >
+struct squad_intermediate_f<MatT_1,MatT_2,MatT_3,3>
+{
+ template< typename Real >
+ typename et::MatrixPromote3< MatT_1,MatT_2,MatT_3 >::temporary_type
+ operator()(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ const MatT_3& m3,
+ Real tolerance)
+ {
+ typedef typename et::MatrixPromote3<
+ MatT_1,MatT_2,MatT_3 >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+ typedef quaternion< value_type > quaternion_type;
+
+ quaternion_type q1, q2, q3;
+ quaternion_rotation_matrix(q1, m1);
+ quaternion_rotation_matrix(q2, m2);
+ quaternion_rotation_matrix(q3, m3);
+
+ quaternion_type q4 = squad_intermediate(q1, q2, q3, tolerance);
+
+ temporary_type m;
+ et::detail::Resize(m,3,3);
+
+ matrix_rotation_quaternion(m, q4);
+
+ return m;
+ }
+};
+
+template< class MatT_1, class MatT_2, class MatT_3 >
+struct squad_intermediate_f<MatT_1,MatT_2,MatT_3,2>
+{
+ template< typename Real >
+ typename et::MatrixPromote3< MatT_1,MatT_2,MatT_3 >::temporary_type
+ operator()(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ const MatT_3& m3,
+ Real tolerance)
+ {
+ typedef typename et::MatrixPromote3<
+ MatT_1,MatT_2,MatT_3 >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+ typedef quaternion< value_type > quaternion_type;
+ typedef vector< value_type, fixed<3> > vector_type;
+
+ value_type angle1 = matrix_to_rotation_2D(m1);
+ value_type angle2 = matrix_to_rotation_2D(m2);
+ value_type angle3 = matrix_to_rotation_2D(m3);
+ vector_type axis(value_type(0), value_type(0), value_type(1));
+
+ quaternion_type q1, q2, q3;
+ quaternion_rotation_axis_angle(q1, axis, angle1);
+ quaternion_rotation_axis_angle(q2, axis, angle2);
+ quaternion_rotation_axis_angle(q3, axis, angle3);
+
+ quaternion_type q4 = squad_intermediate(q1, q2, q3, tolerance);
+
+ value_type angle;
+ quaternion_to_axis_angle(q4, axis, angle);
+
+ temporary_type m;
+ et::detail::Resize(m,2,2);
+
+ matrix_rotation_2D(m, angle);
+
+ return m;
+ }
+};
+
+template< class MatT_1, class MatT_2, class MatT_3, typename Real >
+typename et::MatrixPromote3< MatT_1,MatT_2,MatT_3 >::temporary_type
+squad_intermediate(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ const MatT_3& m3,
+ Real tolerance,
+ et::matrix_result_tag,
+ fixed_size_tag)
+{
+ return squad_intermediate_f<MatT_1,MatT_2,MatT_3,MatT_1::array_rows>()(
+ m1,m2,m3,tolerance);
+}
+
+template< class MatT_1, class MatT_2, class MatT_3, typename Real >
+typename et::MatrixPromote3< MatT_1,MatT_2,MatT_3 >::temporary_type
+squad_intermediate(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ const MatT_3& m3,
+ Real tolerance,
+ et::matrix_result_tag,
+ dynamic_size_tag)
+{
+ typedef typename et::MatrixPromote3<
+ MatT_1,MatT_2,MatT_3 >::temporary_type temporary_type;
+
+ temporary_type m;
+ et::detail::Resize(m,m1.rows(),m1.cols());
+
+ switch (m1.rows()) {
+ case 3:
+ m = squad_intermediate_f<MatT_1,MatT_2,MatT_3,3>()(m1,m2,m3,tolerance);
+ break;
+ case 2:
+ m = squad_intermediate_f<MatT_1,MatT_2,MatT_3,2>()(m1,m2,m3,tolerance);
+ break;
+ default:
+ throw std::invalid_argument(
+ "matrix squad_intermediate_f() expects sizes 3x3 or 2x2");
+ break;
+ }
+ return m;
+}
+#endif
+
+//////////////////////////////////////////////////////////////////////////////
+// Spherical linear interpolation of two vectors of any size
+//////////////////////////////////////////////////////////////////////////////
+
+template< class VecT_1, class VecT_2, typename Real, class SizeT >
+typename detail::TypePromote<
+ VecT_1,VecT_2,typename et::ExprTraits<VecT_1>::result_tag
+>::temporary_type
+slerp(
+ const VecT_1& v1,
+ const VecT_2& v2,
+ Real t,
+ Real tolerance,
+ et::vector_result_tag,
+ SizeT)
+{
+ typedef et::ExprTraits<VecT_1> type_traits;
+ typedef typename type_traits::result_tag result_type;
+ typedef typename
+ detail::TypePromote<VecT_1,VecT_2,result_type>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, v1, size_tag());
+
+ value_type omega = acos_safe(dot(v1,v2));
+ value_type s = std::sin(omega);
+ if (s < tolerance) {
+ result = nlerp(v1,v2,t);
+ } else {
+ result = (value_type(std::sin((value_type(1)-t)*omega))*v1 +
+ value_type(std::sin(t*omega))*v2) / s;
+ }
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Spherical linear interpolation of two quaternions
+//////////////////////////////////////////////////////////////////////////////
+
+template< class QuatT_1, class QuatT_2, typename Real, class SizeT >
+typename detail::TypePromote<
+ QuatT_1,QuatT_2,typename et::ExprTraits<QuatT_1>::result_tag
+>::temporary_type
+slerp(
+ const QuatT_1& q1,
+ const QuatT_2& q2,
+ Real t,
+ Real tolerance,
+ et::quaternion_result_tag,
+ SizeT)
+{
+ typedef et::ExprTraits<QuatT_1> type_traits;
+ typedef typename type_traits::result_tag result_type;
+ typedef typename
+ detail::TypePromote<QuatT_1,QuatT_2,result_type>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+
+ temporary_type q3 = q2;
+ value_type c = dot(q1,q3);
+ if (c < value_type(0)) {
+ // Turning this off temporarily to test squad...
+ q3 = -q3;
+ c = -c;
+ }
+
+ value_type omega = acos_safe(c);
+ value_type s = std::sin(omega);
+
+ return (s < tolerance) ?
+ normalize(lerp(q1,q3,t)) :
+ (value_type(std::sin((value_type(1) - t) * omega)) * q1+
+ value_type(std::sin(t * omega)) * q3) / s;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Helper struct for spherical linear interpolation of 3x3 and 2x2 matrices
+//////////////////////////////////////////////////////////////////////////////
+
+template< class MatT_1, class MatT_2, size_t N > struct slerp_f;
+
+template< class MatT_1, class MatT_2 > struct slerp_f<MatT_1,MatT_2,3>
+{
+ template< typename Real >
+ typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type
+ operator()(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t,
+ Real tolerance)
+ {
+ typedef typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type temporary_type;
+
+ temporary_type m;
+ et::detail::Resize(m,3,3);
+ m = matrix_rotation_difference(m1,m2);
+ matrix_scale_rotation_angle(m,t,tolerance);
+ m = detail::matrix_concat_rotations(m1,m);
+ return m;
+ }
+};
+
+template< class MatT_1, class MatT_2 > struct slerp_f<MatT_1,MatT_2,2>
+{
+ template< typename Real >
+ typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type
+ operator()(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t,
+ Real tolerance)
+ {
+ typedef typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type temporary_type;
+
+ temporary_type m;
+ et::detail::Resize(m,2,2);
+ m = matrix_rotation_difference_2D(m1,m2);
+ matrix_scale_rotation_angle_2D(m,t,tolerance);
+ m = detail::matrix_concat_rotations_2D(m1,m);
+ return m;
+ }
+};
+
+//////////////////////////////////////////////////////////////////////////////
+// Spherical linear interpolation of two matrices of size 3x3 or 2x2
+//////////////////////////////////////////////////////////////////////////////
+
+template< class MatT_1, class MatT_2, typename Real >
+typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+>::temporary_type
+slerp(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t,
+ Real tolerance,
+ et::matrix_result_tag,
+ fixed_size_tag)
+{
+ return slerp_f<MatT_1,MatT_2,MatT_1::array_rows>()(m1,m2,t,tolerance);
+}
+
+template< class MatT_1, class MatT_2, typename Real >
+typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+>::temporary_type
+slerp(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t,
+ Real tolerance,
+ et::matrix_result_tag,
+ dynamic_size_tag)
+{
+ typedef typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type temporary_type;
+
+ temporary_type m;
+ et::detail::Resize(m,m1.rows(),m1.cols());
+
+ switch (m1.rows()) {
+ case 3:
+ m = slerp_f<MatT_1,MatT_2,3>()(m1,m2,t,tolerance);
+ break;
+ case 2:
+ m = slerp_f<MatT_1,MatT_2,2>()(m1,m2,t,tolerance);
+ break;
+ default:
+ throw std::invalid_argument(
+ "matrix slerp() expects sizes 3x3 or 2x2");
+ break;
+ }
+ return m;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Normalized linear interpolation of two vectors of any size
+//////////////////////////////////////////////////////////////////////////////
+
+template< class VecT_1, class VecT_2, typename Real, class SizeT >
+typename detail::TypePromote<
+ VecT_1,VecT_2,typename et::ExprTraits<VecT_1>::result_tag
+>::temporary_type
+nlerp(
+ const VecT_1& v1,
+ const VecT_2& v2,
+ Real t,
+ et::vector_result_tag,
+ SizeT)
+{
+ typedef et::ExprTraits<VecT_1> type_traits;
+ typedef typename type_traits::result_tag result_type;
+ typedef typename
+ detail::TypePromote<VecT_1,VecT_2,result_type>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, v1, size_tag());
+
+ result = (value_type(1)-t)*v1+t*v2;
+ result.normalize();
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Normalized linear interpolation of two quaternions
+//////////////////////////////////////////////////////////////////////////////
+
+template< class QuatT_1, class QuatT_2, typename Real, class SizeT >
+typename detail::TypePromote<
+ QuatT_1,QuatT_2,typename et::ExprTraits<QuatT_1>::result_tag
+>::temporary_type
+nlerp(
+ const QuatT_1& q1,
+ const QuatT_2& q2,
+ Real t,
+ et::quaternion_result_tag,
+ SizeT)
+{
+ typedef et::ExprTraits<QuatT_1> type_traits;
+ typedef typename type_traits::result_tag result_type;
+ typedef typename
+ detail::TypePromote<QuatT_1,QuatT_2,result_type>::temporary_type
+ temporary_type;
+ typedef typename temporary_type::value_type value_type;
+
+ return normalize(lerp(q1, (dot(q1,q2) < value_type(0)) ? -q2 : q2, t));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Helper struct for normalized linear interpolation of 3x3 and 2x2 matrices
+//////////////////////////////////////////////////////////////////////////////
+
+template< class MatT_1, class MatT_2, size_t N > struct nlerp_f;
+
+template< class MatT_1, class MatT_2 > struct nlerp_f<MatT_1,MatT_2,3>
+{
+ template< typename Real >
+ typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type
+ operator()(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t)
+ {
+ typedef typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+
+ temporary_type m;
+ et::detail::Resize(m,3,3);
+ m = lerp(m1,m2,t);
+ matrix_orthogonalize_3x3(m);
+ return m;
+ }
+};
+
+template< class MatT_1, class MatT_2 > struct nlerp_f<MatT_1,MatT_2,2>
+{
+ template< typename Real >
+ typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type
+ operator()(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t)
+ {
+ typedef typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+
+ temporary_type m;
+ et::detail::Resize(m,2,2);
+ m = lerp(m1,m2,t);
+ matrix_orthogonalize_2x2(m);
+ return m;
+ }
+};
+
+//////////////////////////////////////////////////////////////////////////////
+// Normalized linear interpolation of two matrices of size 3x3 or 2x2
+//////////////////////////////////////////////////////////////////////////////
+
+template< class MatT_1, class MatT_2, typename Real >
+typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+>::temporary_type
+nlerp(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t,
+ et::matrix_result_tag,
+ fixed_size_tag)
+{
+ return nlerp_f<MatT_1,MatT_2,MatT_1::array_rows>()(m1,m2,t);
+}
+
+template< class MatT_1, class MatT_2, typename Real >
+typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+>::temporary_type
+nlerp(
+ const MatT_1& m1,
+ const MatT_2& m2,
+ Real t,
+ et::matrix_result_tag,
+ dynamic_size_tag)
+{
+ typedef typename detail::TypePromote<
+ MatT_1,MatT_2,typename et::ExprTraits<MatT_1>::result_tag
+ >::temporary_type temporary_type;
+
+ temporary_type m;
+ et::detail::Resize(m,m1.rows(),m1.cols());
+
+ switch (m1.rows()) {
+ case 3:
+ m = nlerp_f<MatT_1,MatT_2,3>()(m1,m2,t);
+ break;
+ case 2:
+ m = nlerp_f<MatT_1,MatT_2,2>()(m1,m2,t);
+ break;
+ default:
+ throw std::invalid_argument(
+ "matrix nlerp() expects sizes 3x3 or 2x2");
+ break;
+ }
+ return m;
+}
+
+} // namespace detail
+
+//////////////////////////////////////////////////////////////////////////////
+// Construction of 'intermediate' quaternions and matrices for use with squad
+//////////////////////////////////////////////////////////////////////////////
+
+/**
+ * NOTE: Computation of intermediate rotation matrices for matrix 'squad'
+ * doesn't seem to be working correctly. I'm not sure what the problem is
+ * (it might have to do with q and -q representing the same rotation), but
+ * in any case, I don't have time to get it sorted at the moment.
+ *
+ * In the meantime, I've just hacked in static assertions that will
+ * restrict squad usage to quats. For anyone reading these comments, don't
+ * worry: the quaternion verison of squad works just fine. However, you'll
+ * just have to live without matrix squad for the time being (which is
+ * probably just as well, given that matrix interpolation isn't terribly
+ * efficient).
+ */
+
+#if 0
+template< class T1, class T2, class T3 >
+typename detail::TypePromote3<
+ T1,T2,T3,typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+squad_intermediate(
+ const T1& t1,
+ const T2& t2,
+ const T3& t3,
+ typename detail::TypePromote3<
+ T1, T2, T3, typename et::ExprTraits<T1>::result_tag
+ >::value_type tolerance =
+ epsilon <
+ typename detail::TypePromote3<
+ T1, T2, T3, typename et::ExprTraits<T1>::result_tag
+ >::value_type
+ >::placeholder())
+{
+ // HACK: See note above...
+ detail::CheckQuat(t1);
+ detail::CheckQuat(t2);
+ detail::CheckQuat(t3);
+
+ typedef et::ExprTraits<T1> traits_1;
+ typedef typename traits_1::result_tag result_type_1;
+
+ typedef typename detail::TypePromote3<T1,T2,T3,result_type_1>::temporary_type
+ temporary_type;
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, t1, size_tag());
+
+ result = detail::squad_intermediate(
+ t1,t2,t3,tolerance,result_type_1(),size_tag());
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Spherical quadrangle interpolation of two quaternions or matrices
+//////////////////////////////////////////////////////////////////////////////
+
+/**
+ * NOTE: The squad() impelementation is unfinished. I'm leaving the code
+ * here (but preprocessor'ed out) for future reference.
+ *
+ * Currently, it seems that:
+ *
+ * 1. Computation of intermediate matrices is incorrect.
+ * 2. The interpolated orientation sometimes 'jumps' while between nodes.
+ *
+ * I've observed that removing the 'shortest path' negation from the slerp
+ * function eliminates the second problem. Also, in another implementation
+ * of squad that I've seen, q1 and q2 are interpolated over the shortest
+ * path, while the helper quaternions are not. I've never seen this
+ * mentioned as a requirement of squad, but maybe they know something I
+ * don't.
+ *
+ * For anyone who happens to read these comments, all of the other
+ * interpolation functions (lerp, nlerp, slerp, etc.) should work fine -
+ * it's just squad() that's on hold.
+ */
+
+template< class T1, class T2, class T3, class T4, typename Real >
+typename detail::TypePromote4<
+ T1,T2,T3,T4,typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+squad(
+ const T1& t1,
+ const T2& t1_intermediate,
+ const T3& t2_intermediate,
+ const T4& t2,
+ Real t,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ // HACK: See note above...
+ detail::CheckQuat(t1);
+ detail::CheckQuat(t1_intermediate);
+ detail::CheckQuat(t2_intermediate);
+ detail::CheckQuat(t2);
+
+ typedef et::ExprTraits<T1> traits_1;
+ typedef typename traits_1::result_tag result_type_1;
+
+ typedef typename detail::TypePromote4<
+ T1,T2,T3,T4,result_type_1>::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, t1, size_tag());
+
+ result = slerp(
+ slerp(t1, t2, t, tolerance),
+ slerp(t1_intermediate, t2_intermediate, t, tolerance),
+ value_type(2) * t * (value_type(1) - t),
+ tolerance
+ );
+
+ return result;
+}
+#endif
+
+//////////////////////////////////////////////////////////////////////////////
+// Spherical linear interpolation of two vectors, quaternions or matrices
+//////////////////////////////////////////////////////////////////////////////
+
+template< class T1, class T2, typename Real >
+typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+slerp(
+ const T1& t1,
+ const T2& t2,
+ Real t,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef et::ExprTraits<T1> traits_1;
+ typedef typename traits_1::result_tag result_type_1;
+
+ typedef typename detail::TypePromote<T1,T2,result_type_1>::temporary_type
+ temporary_type;
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, t1, size_tag());
+
+ result = detail::slerp(t1,t2,t,tolerance,result_type_1(),size_tag());
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Normalized linear interpolation of two vectors, quaternions or matrices
+//////////////////////////////////////////////////////////////////////////////
+
+template< class T1, class T2, typename Real >
+typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+nlerp(const T1& t1, const T2& t2, Real t)
+{
+ typedef et::ExprTraits<T1> traits_1;
+ typedef typename traits_1::result_tag result_type_1;
+
+ typedef typename detail::TypePromote<T1,T2,result_type_1>::temporary_type
+ temporary_type;
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, t1, size_tag());
+
+ result = detail::nlerp(t1,t2,t,result_type_1(),size_tag());
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Linear interpolation of two values of any qualified type
+//////////////////////////////////////////////////////////////////////////////
+
+/** Linear interpolation of 2 values.
+ *
+ * @note The data points are assumed to be sampled at u = 0 and u = 1, so
+ * for interpolation u must lie between 0 and 1.
+ */
+template< class T1, class T2, typename Scalar >
+typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+lerp(const T1& val0, const T2& val1, Scalar u)
+{
+ typedef
+ typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type temporary_type;
+
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, val1, size_tag());
+
+ result = (Scalar(1) - u) * val0 + u * val1;
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Bilinear interpolation of four values of any qualified type
+//////////////////////////////////////////////////////////////////////////////
+
+template < class T1, class T2, class T3, class T4, typename Scalar >
+typename detail::TypePromote<
+ typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ T3,T4,typename et::ExprTraits<T3>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+bilerp(const T1& val00, const T2& val10,
+ const T3& val01, const T4& val11,
+ Scalar u, Scalar v)
+{
+ typedef
+ typename detail::TypePromote<
+ typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ T3,T4,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+ >::temporary_type temporary_type;
+
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, val00, size_tag());
+
+ Scalar uv = u * v;
+ result = (
+ (Scalar(1.0) - u - v + uv) * val00 +
+ (u - uv) * val10 +
+ (v - uv) * val01 +
+ uv * val11
+ );
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Trilinear interpolation of eight values of any qualified type
+//////////////////////////////////////////////////////////////////////////////
+
+/** Trilinear interpolation of 8 values.
+ *
+ * @note The data values are assumed to be sampled at the corners of a unit
+ * cube, so for interpolation, u, v, and w must lie between 0 and 1.
+ */
+template < class T1, class T2, class T3, class T4,
+ class T5, class T6, class T7, class T8,
+ typename Scalar >
+typename detail::TypePromote<
+ typename detail::TypePromote<
+ typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ T3,T4,typename et::ExprTraits<T3>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ typename detail::TypePromote<
+ T5,T6,typename et::ExprTraits<T5>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ T7,T8,typename et::ExprTraits<T7>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+>::temporary_type
+trilerp(const T1& val000, const T2& val100,
+ const T3& val010, const T4& val110,
+ const T5& val001, const T6& val101,
+ const T7& val011, const T8& val111,
+ Scalar u, Scalar v, Scalar w)
+{
+ typedef
+ typename detail::TypePromote<
+ typename detail::TypePromote<
+ typename detail::TypePromote<
+ T1,T2,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ T3,T4,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ typename detail::TypePromote<
+ T5,T6,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename detail::TypePromote<
+ T7,T8,typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+ >::temporary_type,
+ typename et::ExprTraits<T1>::result_tag
+ >::temporary_type temporary_type;
+
+ typedef et::ExprTraits<temporary_type> result_traits;
+ typedef typename result_traits::size_tag size_tag;
+
+ temporary_type result;
+ detail::InterpResize(result, val000, size_tag());
+
+ Scalar uv = u * v;
+ Scalar vw = v * w;
+ Scalar wu = w * u;
+ Scalar uvw = uv * w;
+
+ result = (
+ (Scalar(1.0) - u - v - w + uv + vw + wu - uvw) * val000 +
+ (u - uv - wu + uvw) * val100 +
+ (v - uv - vw + uvw) * val010 +
+ (uv - uvw) * val110 +
+ (w - vw - wu + uvw) * val001 +
+ (wu - uvw) * val101 +
+ (vw - uvw) * val011 +
+ uvw * val111
+ );
+ return result;
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef mathlib_h
+#define mathlib_h
+
+#include <cml/mathlib/typedef.h>
+#include <cml/mathlib/epsilon.h>
+#include <cml/mathlib/vector_angle.h>
+#include <cml/mathlib/vector_ortho.h>
+#include <cml/mathlib/vector_transform.h>
+#include <cml/mathlib/matrix_ortho.h>
+#include <cml/mathlib/matrix_rotation.h>
+#include <cml/mathlib/matrix_transform.h>
+#include <cml/mathlib/matrix_projection.h>
+#include <cml/mathlib/quaternion_basis.h>
+#include <cml/mathlib/quaternion_rotation.h>
+#include <cml/mathlib/coord_conversion.h>
+#include <cml/mathlib/interpolation.h>
+#include <cml/mathlib/frustum.h>
+#include <cml/mathlib/projection.h>
+#include <cml/mathlib/picking.h>
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_basis_h
+#define matrix_basis_h
+
+#include <cml/mathlib/checking.h>
+
+/* This file contains functions for setting and retrieving the basis vectors
+ * or transposed basis vectors of a matrix representing a 3D or 2D transform,
+ * either by index (0,1,2) or name (x,y,z).
+ *
+ * In addition to being a convenience for the user, the functions are also
+ * in support of other matrix functions which are best implemented in vector
+ * form (such as orthogonalization and construction of orthonormal bases).
+ *
+ * Note that matrix expression arguments are allowed to have dimensions larger
+ * than the minimum requirement. For example, matrix_get_basis_vector() can be
+ * called on any NxM matrix with N,M >= 3.
+ *
+ * As with other matrix functions, the following template argument notation is
+ * used for conciseness:
+ *
+ * E = vector or matrix element type
+ * A = vector or matrix array storage type
+ * B = matrix basis orientation type
+ * L = matrix layout type
+ */
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// Functions for setting the basis vectors of a 3D or 2D transform matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Set the i'th basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_basis_vector(matrix<E,A,B,L>& m, size_t i, const VecT& v)
+{
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckVec3(v);
+ detail::CheckIndex3(i);
+
+ m.set_basis_element(i,0,v[0]);
+ m.set_basis_element(i,1,v[1]);
+ m.set_basis_element(i,2,v[2]);
+}
+
+/** Set the i'th transposed basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_transposed_basis_vector(matrix<E,A,B,L>& m,size_t i,const VecT& v)
+{
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckVec3(v);
+ detail::CheckIndex3(i);
+
+ m.set_basis_element(0,i,v[0]);
+ m.set_basis_element(1,i,v[1]);
+ m.set_basis_element(2,i,v[2]);
+}
+
+/** Set the i'th basis vector of a 2D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_basis_vector_2D(matrix<E,A,B,L>& m, size_t i, const VecT& v)
+{
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckVec2(v);
+ detail::CheckIndex2(i);
+
+ m.set_basis_element(i,0,v[0]);
+ m.set_basis_element(i,1,v[1]);
+}
+
+/** Set the i'th transposed basis vector of a 2D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_transposed_basis_vector_2D(
+ matrix<E,A,B,L>& m, size_t i, const VecT& v)
+{
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckVec2(v);
+ detail::CheckIndex2(i);
+
+ m.set_basis_element(0,i,v[0]);
+ m.set_basis_element(1,i,v[1]);
+}
+
+/** Set the x basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_x_basis_vector(matrix<E,A,B,L>& m, const VecT& x) {
+ matrix_set_basis_vector(m,0,x);
+}
+
+/** Set the y basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_y_basis_vector(matrix<E,A,B,L>& m, const VecT& y) {
+ matrix_set_basis_vector(m,1,y);
+}
+
+/** Set the z basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_z_basis_vector(matrix<E,A,B,L>& m, const VecT& z) {
+ matrix_set_basis_vector(m,2,z);
+}
+
+/** Set the transposed x basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_transposed_x_basis_vector(matrix<E,A,B,L>& m, const VecT& x) {
+ matrix_set_transposed_basis_vector(m,0,x);
+}
+
+/** Set the transposed y basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_transposed_y_basis_vector(matrix<E,A,B,L>& m, const VecT& y) {
+ matrix_set_transposed_basis_vector(m,1,y);
+}
+
+/** Set the transposed z basis vector of a 3D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_transposed_z_basis_vector(matrix<E,A,B,L>& m, const VecT& z) {
+ matrix_set_transposed_basis_vector(m,2,z);
+}
+
+/** Set the x basis vector of a 2D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_x_basis_vector_2D(matrix<E,A,B,L>& m, const VecT& x) {
+ matrix_set_basis_vector_2D(m,0,x);
+}
+
+/** Set the y basis vector of a 2D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_y_basis_vector_2D(matrix<E,A,B,L>& m, const VecT& y) {
+ matrix_set_basis_vector_2D(m,1,y);
+}
+
+/** Set the transposed x basis vector of a 2D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_transposed_x_basis_vector_2D(matrix<E,A,B,L>& m,const VecT& x) {
+ matrix_set_transposed_basis_vector_2D(m,0,x);
+}
+
+/** Set the transposed y basis vector of a 2D transform */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_transposed_y_basis_vector_2D(matrix<E,A,B,L>& m,const VecT& y) {
+ matrix_set_transposed_basis_vector_2D(m,1,y);
+}
+
+/** Set the basis vectors of a 3D transform */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_set_basis_vectors(
+ matrix<E,A,B,L>& m, const VecT_1& x, const VecT_2& y, const VecT_3& z)
+{
+ matrix_set_x_basis_vector(m,x);
+ matrix_set_y_basis_vector(m,y);
+ matrix_set_z_basis_vector(m,z);
+}
+
+/** Set the transposed basis vectors of a 3D transform */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_set_transposed_basis_vectors(
+ matrix<E,A,B,L>& m, const VecT_1& x, const VecT_2& y, const VecT_3& z)
+{
+ matrix_set_transposed_x_basis_vector(m,x);
+ matrix_set_transposed_y_basis_vector(m,y);
+ matrix_set_transposed_z_basis_vector(m,z);
+}
+
+/** Set the basis vectors of a 2D transform */
+template < typename E,class A,class B,class L,class VecT_1,class VecT_2 > void
+matrix_set_basis_vectors_2D(
+ matrix<E,A,B,L>& m, const VecT_1& x, const VecT_2& y)
+{
+ matrix_set_x_basis_vector_2D(m,x);
+ matrix_set_y_basis_vector_2D(m,y);
+}
+
+/** Set the transposed basis vectors of a 2D transform */
+template < typename E,class A,class B,class L,class VecT_1,class VecT_2 > void
+matrix_set_transposed_basis_vectors_2D(
+ matrix<E,A,B,L>& m, const VecT_1& x, const VecT_2& y)
+{
+ matrix_set_transposed_x_basis_vector_2D(m,x);
+ matrix_set_transposed_y_basis_vector_2D(m,y);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Functions for getting the basis vectors of a 3D or 2D transform matrix
+//////////////////////////////////////////////////////////////////////////////
+
+#define TEMP_VEC3 vector< typename MatT::value_type, fixed<3> >
+#define TEMP_VEC2 vector< typename MatT::value_type, fixed<2> >
+
+/** Get the i'th basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_basis_vector(const MatT& m, size_t i)
+{
+ typedef TEMP_VEC3 vector_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(i);
+
+ return vector_type(
+ m.basis_element(i,0), m.basis_element(i,1), m.basis_element(i,2));
+}
+
+/** Get the i'th transposed basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_transposed_basis_vector(const MatT& m, size_t i)
+{
+ typedef typename MatT::value_type value_type;
+ typedef vector< value_type, fixed<3> > vector_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(i);
+
+ return vector_type(
+ m.basis_element(0,i), m.basis_element(1,i), m.basis_element(2,i));
+}
+
+/** Get the i'th basis vector of a 2D transform */
+template < class MatT > TEMP_VEC2
+matrix_get_basis_vector_2D(const MatT& m, size_t i)
+{
+ typedef TEMP_VEC2 vector_type;
+
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckIndex2(i);
+
+ return vector_type(m.basis_element(i,0), m.basis_element(i,1));
+}
+
+/** Get the i'th transposed basis vector of a 2D transform */
+template < class MatT > TEMP_VEC2
+matrix_get_transposed_basis_vector_2D(const MatT& m, size_t i)
+{
+ typedef TEMP_VEC2 vector_type;
+
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckIndex2(i);
+
+ return vector_type(m.basis_element(0,i), m.basis_element(1,i));
+}
+
+/** Get the x basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_x_basis_vector(const MatT& m) {
+ return matrix_get_basis_vector(m,0);
+}
+
+/** Get the y basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_y_basis_vector(const MatT& m) {
+ return matrix_get_basis_vector(m,1);
+}
+
+/** Get the z basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_z_basis_vector(const MatT& m) {
+ return matrix_get_basis_vector(m,2);
+}
+
+/** Get the transposed x basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_transposed_x_basis_vector(const MatT& m) {
+ return matrix_get_transposed_basis_vector(m,0);
+}
+
+/** Get the transposed y basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_transposed_y_basis_vector(const MatT& m) {
+ return matrix_get_transposed_basis_vector(m,1);
+}
+
+/** Get the transposed z basis vector of a 3D transform */
+template < class MatT > TEMP_VEC3
+matrix_get_transposed_z_basis_vector(const MatT& m) {
+ return matrix_get_transposed_basis_vector(m,2);
+}
+
+/** Get the x basis vector of a 2D transform */
+template < class MatT > TEMP_VEC2
+matrix_get_x_basis_vector_2D(const MatT& m) {
+ return matrix_get_basis_vector_2D(m,0);
+}
+
+/** Get the y basis vector of a 2D transform */
+template < class MatT > TEMP_VEC2
+matrix_get_y_basis_vector_2D(const MatT& m) {
+ return matrix_get_basis_vector_2D(m,1);
+}
+
+/** Get the transposed x basis vector of a 2D transform */
+template < class MatT > TEMP_VEC2
+matrix_get_transposed_x_basis_vector_2D(const MatT& m) {
+ return matrix_get_transposed_basis_vector_2D(m,0);
+}
+
+/** Get the transposed y basis vector of a 2D transform */
+template < class MatT > TEMP_VEC2
+matrix_get_transposed_y_basis_vector_2D(const MatT& m) {
+ return matrix_get_transposed_basis_vector_2D(m,1);
+}
+
+/** Get the basis vectors of a 3D transform */
+template < class MatT, class E, class A > void
+matrix_get_basis_vectors(
+ const MatT& m, vector<E,A>& x, vector<E,A>& y, vector<E,A>& z)
+{
+ x = matrix_get_x_basis_vector(m);
+ y = matrix_get_y_basis_vector(m);
+ z = matrix_get_z_basis_vector(m);
+}
+
+/** Get the transposed basis vectors of a 3D transform */
+template < class MatT, typename E, class A > void
+matrix_get_transposed_basis_vectors(
+ const MatT& m, vector<E,A>& x, vector<E,A>& y, vector<E,A>& z)
+{
+ x = matrix_get_transposed_x_basis_vector(m);
+ y = matrix_get_transposed_y_basis_vector(m);
+ z = matrix_get_transposed_z_basis_vector(m);
+}
+
+/** Get the basis vectors of a 2D transform */
+template < class MatT, typename E, class A > void
+matrix_get_basis_vectors_2D(const MatT& m,vector<E,A>& x,vector<E,A>& y)
+{
+ x = matrix_get_x_basis_vector_2D(m);
+ y = matrix_get_y_basis_vector_2D(m);
+}
+
+/** Get the transposed basis vectors of a 2D transform */
+template < class MatT, typename E, class A > void
+matrix_get_transposed_basis_vectors_2D(
+ const MatT& m, vector<E,A>& x, vector<E,A>& y)
+{
+ x = matrix_get_transposed_x_basis_vector_2D(m);
+ y = matrix_get_transposed_y_basis_vector_2D(m);
+}
+
+#undef TEMP_VEC3
+#undef TEMP_VEC2
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_concat_h
+#define matrix_concat_h
+
+#include <cml/matrix/matrix_expr.h>
+
+/* This will all most likely be abstracted away in a future version of the
+ * CML. For now, this file provides support for functions that need to
+ * concatenate transformation matrices in a basis-independent manner.
+ *
+ * @todo: The 2x2 and 3x3 versions of these functions are currently in
+ * matrix_rotation.h. They should be moved here.
+ */
+
+namespace cml {
+namespace detail {
+
+/** A fixed-size temporary 4x4 matrix */
+#define MAT_TEMP_4X4 matrix< \
+ typename et::ScalarPromote< \
+ typename MatT_1::value_type, \
+ typename MatT_2::value_type \
+ >::type, \
+ fixed<4,4>, \
+ typename MatT_1::basis_orient, \
+ typename MatT_1::layout \
+>
+
+template < class MatT_1, class MatT_2 > MAT_TEMP_4X4
+matrix_concat_transforms_4x4(const MatT_1& m1, const MatT_2& m2, row_basis) {
+ return m1*m2;
+}
+
+/** Concatenate two 3D col-basis rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_4X4
+matrix_concat_transforms_4x4(const MatT_1& m1, const MatT_2& m2, col_basis) {
+ return m2*m1;
+}
+
+/** Concatenate two 3D rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_4X4
+matrix_concat_transforms_4x4(const MatT_1& m1, const MatT_2& m2) {
+ return matrix_concat_transforms_4x4(m1,m2,typename MatT_1::basis_orient());
+}
+
+#undef MAT_TEMP_4x4
+
+} // namespace detail
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_misc_h
+#define matrix_misc_h
+
+#include <cml/mathlib/checking.h>
+
+/* Miscellaneous matrix functions. */
+
+namespace cml {
+
+/** Set a (possibly non-square) matrix to represent an identity transform */
+template < typename E, class A, class B, class L > void
+identity_transform(matrix<E,A,B,L>& m)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ for (size_t i = 0; i < m.rows(); ++i) {
+ for (size_t j = 0; j < m.cols(); ++j) {
+ m(i,j) = value_type((i == j) ? 1 : 0);
+ }
+ }
+}
+
+/** Trace of a square matrix */
+template < class MatT > typename MatT::value_type
+trace(const MatT& m)
+{
+ typedef typename MatT::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatSquare(m);
+
+ value_type t = value_type(0);
+ for (size_t i = 0; i < m.rows(); ++i) {
+ t += m(i,i);
+ }
+ return t;
+}
+
+/** Trace of the upper-left 3x3 part of a matrix */
+template < class MatT > typename MatT::value_type
+trace_3x3(const MatT& m)
+{
+ /* Checking */
+ detail::CheckMatMin3x3(m);
+
+ return m(0,0) + m(1,1) + m(2,2);
+}
+
+/** Trace of the upper-left 2x2 part of a matrix */
+template < class MatT > typename MatT::value_type
+trace_2x2(const MatT& m)
+{
+ /* Checking */
+ detail::CheckMatMin2x2(m);
+
+ return m(0,0) + m(1,1);
+}
+
+/** 3D skew-symmetric matrix */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_skew_symmetric(matrix<E,A,B,L>& m, const VecT& v)
+{
+ /* Checking */
+ detail::CheckMatMin3x3(m);
+ detail::CheckVec3(v);
+
+ m.zero();
+
+ m.set_basis_element(1,2, v[0]);
+ m.set_basis_element(2,1,-v[0]);
+ m.set_basis_element(2,0, v[1]);
+ m.set_basis_element(0,2,-v[1]);
+ m.set_basis_element(0,1, v[2]);
+ m.set_basis_element(1,0,-v[2]);
+}
+
+/** 2D skew-symmetric matrix */
+template < typename E, class A, class B, class L > void
+matrix_skew_symmetric_2D(matrix<E,A,B,L>& m, E s)
+{
+ /* Checking */
+ detail::CheckMatMin2x2(m);
+
+ m.zero();
+
+ m.set_basis_element(0,1, s);
+ m.set_basis_element(1,0,-s);
+}
+
+/* @todo: Clean this up, and implement SRT as well */
+
+/** Invert a matrix consisting of a 3D rotation and translation */
+template < typename E, class A, class B, class L > void
+matrix_invert_RT_only(matrix<E,A,B,L>& m)
+{
+ typedef vector< E, fixed<3> > vector_type;
+
+ vector_type x, y, z;
+ matrix_get_basis_vectors(m,x,y,z);
+ matrix_set_transposed_basis_vectors(m,x,y,z);
+
+ vector_type p = matrix_get_translation(m);
+ matrix_set_translation(m,-dot(p,x),-dot(p,y),-dot(p,z));
+}
+
+/** Invert a matrix consisting of a 2D rotation and ranslation */
+template < typename E, class A, class B, class L > void
+matrix_invert_RT_only_2D(matrix<E,A,B,L>& m)
+{
+ typedef vector< E, fixed<2> > vector_type;
+
+ vector_type x, y;
+ matrix_get_basis_vectors_2D(m,x,y);
+ matrix_set_transposed_basis_vectors_2D(m,x,y);
+
+ vector_type p = matrix_get_translation_2D(m);
+ matrix_set_translation_2D(m,-dot(p,x),-dot(p,y));
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_ortho_h
+#define matrix_ortho_h
+
+#include <cml/mathlib/vector_ortho.h>
+
+/* Functions for orthogonalizing a matrix.
+ *
+ * matrix_orthogonalize_3x3() and _2x2() operate on the upper-left-hand part
+ * of any matrix of suitable size; this is to allow orthonormalization of the
+ * rotation part of an affine transform matrix.
+ *
+ * Note: These functions pass off to the orthonormalization functions in
+ * vector_ortho.h, so see that file for details on the optional parameters.
+ *
+ * @todo: General NxN matrix orthogonalization.
+ */
+
+namespace cml {
+
+/** Orthogonalize the upper-left 3x3 portion of a matrix */
+template < typename E, class A, class B, class L > void
+matrix_orthogonalize_3x3(matrix<E,A,B,L>& m, size_t stable_axis = 2,
+ size_t num_iter = 0, E s = E(1))
+{
+ typedef vector< E, fixed<3> > vector_type;
+
+ vector_type x, y, z;
+ matrix_get_basis_vectors(m,x,y,z);
+ orthonormalize(x,y,z,stable_axis,num_iter,s);
+ matrix_set_basis_vectors(m,x,y,z);
+}
+
+/** Orthogonalize the upper-left 2x2 portion of a matrix */
+template < typename E, class A, class B, class L > void
+matrix_orthogonalize_2x2(matrix<E,A,B,L>& m, size_t stable_axis = 0,
+ size_t num_iter = 0, E s = E(1))
+{
+ typedef vector< E, fixed<2> > vector_type;
+
+ vector_type x, y;
+ matrix_get_basis_vectors_2D(m,x,y);
+ orthonormalize(x,y,stable_axis,num_iter,s);
+ matrix_set_basis_vectors_2D(m,x,y);
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_projection_h
+#define matrix_projection_h
+
+#include <cml/mathlib/checking.h>
+#include <cml/mathlib/helper.h>
+
+/* Functions for building matrix transforms other than rotations
+ * (matrix_rotation.h) and viewing projections (matrix_projection.h).
+ *
+ * @todo: Clean up comments and documentation throughout.
+ */
+
+// NOTE: Changed 'near' and 'far' to 'n' and 'f' throughout to work around
+// windows.h 'near' and 'far' macros.
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D perspective projection from frustum
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a perspective projection, specified by frustum
+ * bounds in l,r,b,t,n,f form, and with the given handedness and z clipping
+ * range
+ */
+template < typename E, class A, class B, class L > void
+matrix_perspective(matrix<E,A,B,L>& m, E left, E right, E bottom, E top,
+ E n, E f, Handedness handedness,
+ ZClip z_clip)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatHomogeneous3D(m);
+
+ identity_transform(m);
+
+ value_type inv_width = value_type(1) / (right - left);
+ value_type inv_height = value_type(1) / (top - bottom);
+ value_type inv_depth = value_type(1) / (f - n);
+ value_type near2 = value_type(2) * n;
+ value_type s = handedness == left_handed ? 1 : -1;
+
+ if (z_clip == z_clip_neg_one) {
+ m.set_basis_element(2,2,s * (f + n) * inv_depth);
+ m.set_basis_element(3,2,value_type(-2) * f * n * inv_depth);
+ } else { // z_clip == z_clip_zero
+ m.set_basis_element(2,2,s * f * inv_depth);
+ m.set_basis_element(3,2,-s * n * m.basis_element(2,2));
+ }
+
+ m.set_basis_element(0,0,near2 * inv_width );
+ m.set_basis_element(1,1,near2 * inv_height );
+ m.set_basis_element(2,0,-s * (right + left) * inv_width );
+ m.set_basis_element(2,1,-s * (top + bottom) * inv_height);
+ m.set_basis_element(2,3,s );
+ m.set_basis_element(3,3,value_type(0) );
+}
+
+/** Build a matrix representing a perspective projection, specified by frustum
+ * bounds in w,h,n,f form, and with the given handedness and z clipping
+ * range
+ */
+template < typename E, class A, class B, class L > void
+matrix_perspective(matrix<E,A,B,L>& m, E width, E height, E n, E f,
+ Handedness handedness, ZClip z_clip)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ value_type half_width = width * value_type(.5);
+ value_type half_height = height * value_type(.5);
+ matrix_perspective(m, -half_width, half_width,
+ -half_height, half_height, n, f, handedness, z_clip);
+}
+
+/** Build a left-handedness frustum perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_LH(matrix<E,A,B,L>& m, E left, E right, E bottom,
+ E top, E n, E f, ZClip z_clip)
+{
+ matrix_perspective(m, left, right, bottom, top, n, f,
+ left_handed, z_clip);
+}
+
+/** Build a right-handedness frustum perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_RH(matrix<E,A,B,L>& m, E left, E right, E bottom,
+ E top, E n, E f, ZClip z_clip)
+{
+ matrix_perspective(m, left, right, bottom, top, n, f,
+ right_handed, z_clip);
+}
+
+/** Build a left-handedness frustum perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_LH(matrix<E,A,B,L>& m, E width, E height, E n,
+ E f, ZClip z_clip)
+{
+ matrix_perspective(m, width, height, n, f, left_handed, z_clip);
+}
+
+/** Build a right-handedness frustum perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_RH(matrix<E,A,B,L>& m, E width, E height, E n,
+ E f, ZClip z_clip)
+{
+ matrix_perspective(m, width, height, n, f, right_handed, z_clip);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D perspective projection from horizontal field of view
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_xfov(matrix<E,A,B,L>& m, E xfov, E aspect, E n,
+ E f, Handedness handedness, ZClip z_clip)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ value_type width = value_type(2) * std::tan(xfov * value_type(.5)) * n;
+ matrix_perspective(m, width, width / aspect, n, f,
+ handedness, z_clip);
+}
+
+/** Build a left-handedness perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_xfov_LH(matrix<E,A,B,L>& m, E xfov, E aspect, E n,
+ E f, ZClip z_clip)
+{
+ matrix_perspective_xfov(m,xfov,aspect,n,f,left_handed,z_clip);
+}
+
+/** Build a right-handedness perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_xfov_RH(matrix<E,A,B,L>& m, E xfov, E aspect, E n,
+ E f, ZClip z_clip)
+{
+ matrix_perspective_xfov(m,xfov,aspect,n,f,right_handed,z_clip);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D perspective projection from vertical field of view
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_yfov(matrix<E,A,B,L>& m, E yfov, E aspect, E n,
+ E f, Handedness handedness, ZClip z_clip)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ value_type height = value_type(2) * std::tan(yfov * value_type(.5)) * n;
+ matrix_perspective(m, height * aspect, height, n, f,
+ handedness, z_clip);
+}
+
+/** Build a left-handedness perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_yfov_LH(matrix<E,A,B,L>& m, E yfov, E aspect, E n,
+ E f, ZClip z_clip)
+{
+ matrix_perspective_yfov(m,yfov,aspect,n,f,left_handed,z_clip);
+}
+
+/** Build a right-handedness perspective matrix */
+template < typename E, class A, class B, class L > void
+matrix_perspective_yfov_RH(matrix<E,A,B,L>& m, E yfov, E aspect, E n,
+ E f, ZClip z_clip)
+{
+ matrix_perspective_yfov(m,yfov,aspect,n,f,right_handed,z_clip);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D orthographic projection from frustum
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing an orthographic projection, specified by
+ * frustum bounds in l,r,b,t,n,f form, and with the given handedness and z
+ * clipping range
+ */
+
+template < typename E, class A, class B, class L > void
+matrix_orthographic(matrix<E,A,B,L>& m, E left, E right, E bottom, E top,
+ E n, E f, Handedness handedness,
+ ZClip z_clip)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatHomogeneous3D(m);
+
+ identity_transform(m);
+
+ value_type inv_width = value_type(1) / (right - left);
+ value_type inv_height = value_type(1) / (top - bottom);
+ value_type inv_depth = value_type(1) / (f - n);
+ value_type s = handedness == left_handed ? 1 : -1;
+
+ if (z_clip == z_clip_neg_one) {
+ m.set_basis_element(2,2,s * value_type(2) * inv_depth);
+ m.set_basis_element(3,2,-(f + n) * inv_depth);
+ } else { // z_clip.z_clip() == 0
+ m.set_basis_element(2,2,s * inv_depth);
+ m.set_basis_element(3,2,-n * inv_depth);
+ }
+
+ m.set_basis_element(0,0,value_type(2) * inv_width );
+ m.set_basis_element(1,1,value_type(2) * inv_height );
+ m.set_basis_element(3,0,-(right + left) * inv_width );
+ m.set_basis_element(3,1,-(top + bottom) * inv_height);
+}
+
+/** Build an orthographic projection matrix */
+template < typename E, class A, class B, class L > void
+matrix_orthographic(matrix<E,A,B,L>& m, E width, E height, E n, E f,
+ Handedness handedness, ZClip z_clip)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ value_type half_width = width * value_type(.5);
+ value_type half_height = height * value_type(.5);
+ matrix_orthographic(m, -half_width, half_width,
+ -half_height, half_height, n, f, handedness, z_clip);
+}
+
+/** Build a left-handedness orthographic projection matrix */
+template < typename E, class A, class B, class L > void
+matrix_orthographic_LH(matrix<E,A,B,L>& m, E left, E right, E bottom,
+ E top, E n, E f, ZClip z_clip)
+{
+ matrix_orthographic(m, left, right, bottom, top, n, f,
+ left_handed, z_clip);
+}
+
+/** Build a right-handedness orthographic projection matrix */
+template < typename E, class A, class B, class L > void
+matrix_orthographic_RH(matrix<E,A,B,L>& m, E left, E right, E bottom,
+ E top, E n, E f, ZClip z_clip)
+{
+ matrix_orthographic(m, left, right, bottom, top, n, f,
+ right_handed, z_clip);
+}
+
+/** Build a left-handedness orthographic projection matrix */
+template < typename E, class A, class B, class L > void
+matrix_orthographic_LH(matrix<E,A,B,L>& m, E width, E height, E n,
+ E f, ZClip z_clip)
+{
+ matrix_orthographic(m, width, height, n, f, left_handed,
+ z_clip);
+}
+
+/** Build a right-handedness orthographic projection matrix */
+template < typename E, class A, class B, class L > void
+matrix_orthographic_RH(matrix<E,A,B,L>& m, E width, E height, E n,
+ E f, ZClip z_clip)
+{
+ matrix_orthographic(m, width, height, n, f, right_handed,
+ z_clip);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D viewport
+//////////////////////////////////////////////////////////////////////////////
+
+/* Build a viewport matrix
+ *
+ * Note: A viewport matrix is in a sense the opposite of an orthographics
+ * projection matrix, and can be build by constructing and inverting the
+ * latter.
+ *
+ * @todo: Need to look into D3D viewport conventions and see if this needs to
+ * be adapted accordingly.
+ */
+
+template < typename E, class A, class B, class L > void
+matrix_viewport(matrix<E,A,B,L>& m, E left, E right, E bottom,
+ E top, ZClip z_clip, E n = E(0), E f = E(1))
+{
+ matrix_orthographic_LH(m, left, right, bottom, top, n, f, z_clip);
+ /* @todo: invert(m), when available */
+ m = inverse(m);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D picking volume
+//////////////////////////////////////////////////////////////////////////////
+
+/* Build a pick volume matrix
+ *
+ * When post-concatenated with a projection matrix, the pick matrix modifies
+ * the view volume to create a 'picking volume'. This volume corresponds to
+ * a screen rectangle centered at (pick_x, pick_y) and with dimensions
+ * pick_widthXpick_height.
+ *
+ * @todo: Representation of viewport between this function and
+ * matrix_viewport() is inconsistent (position and dimensions vs. bounds).
+ * Should this be addressed?
+ */
+
+template < typename E, class A, class B, class L > void
+matrix_pick(
+ matrix<E,A,B,L>& m, E pick_x, E pick_y, E pick_width, E pick_height,
+ E viewport_x, E viewport_y, E viewport_width, E viewport_height)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatHomogeneous3D(m);
+
+ identity_transform(m);
+
+ value_type inv_width = value_type(1) / pick_width;
+ value_type inv_height = value_type(1) / pick_height;
+
+ m.set_basis_element(0,0,viewport_width*inv_width);
+ m.set_basis_element(1,1,viewport_height*inv_height);
+ m.set_basis_element(3,0,
+ (viewport_width+value_type(2)*(viewport_x-pick_x))*inv_width);
+ m.set_basis_element(3,1,
+ (viewport_height+value_type(2)*(viewport_y-pick_y))*inv_height);
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_rotation_h
+#define matrix_rotation_h
+
+#include <cml/mathlib/matrix_misc.h>
+#include <cml/mathlib/vector_ortho.h>
+
+/* Functions related to matrix rotations in 3D and 2D. */
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D rotation about world axes
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 3D rotation about the given world axis */
+template < typename E, class A, class B, class L > void
+matrix_rotation_world_axis( matrix<E,A,B,L>& m, size_t axis, E angle)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ value_type s = value_type(std::sin(angle));
+ value_type c = value_type(std::cos(angle));
+
+ identity_transform(m);
+
+ m.set_basis_element(j,j, c);
+ m.set_basis_element(j,k, s);
+ m.set_basis_element(k,j,-s);
+ m.set_basis_element(k,k, c);
+}
+
+/** Build a matrix representing a 3D rotation about the world x axis */
+template < typename E, class A, class B, class L > void
+matrix_rotation_world_x(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotation_world_axis(m,0,angle);
+}
+
+/** Build a matrix representing a 3D rotation about the world y axis */
+template < typename E, class A, class B, class L > void
+matrix_rotation_world_y(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotation_world_axis(m,1,angle);
+}
+
+/** Build a matrix representing a 3D rotation about the world z axis */
+template < typename E, class A, class B, class L > void
+matrix_rotation_world_z(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotation_world_axis(m,2,angle);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D rotation from an axis-angle pair
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a rotation matrix from an axis-angle pair */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_rotation_axis_angle(matrix<E,A,B,L>& m, const VecT& axis, E angle)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckVec3(axis);
+
+ identity_transform(m);
+
+ value_type s = std::sin(angle);
+ value_type c = std::cos(angle);
+ value_type omc = value_type(1) - c;
+
+ value_type xomc = axis[0] * omc;
+ value_type yomc = axis[1] * omc;
+ value_type zomc = axis[2] * omc;
+
+ value_type xxomc = axis[0] * xomc;
+ value_type yyomc = axis[1] * yomc;
+ value_type zzomc = axis[2] * zomc;
+ value_type xyomc = axis[0] * yomc;
+ value_type yzomc = axis[1] * zomc;
+ value_type zxomc = axis[2] * xomc;
+
+ value_type xs = axis[0] * s;
+ value_type ys = axis[1] * s;
+ value_type zs = axis[2] * s;
+
+ m.set_basis_element(0,0, xxomc + c );
+ m.set_basis_element(0,1, xyomc + zs);
+ m.set_basis_element(0,2, zxomc - ys);
+ m.set_basis_element(1,0, xyomc - zs);
+ m.set_basis_element(1,1, yyomc + c );
+ m.set_basis_element(1,2, yzomc + xs);
+ m.set_basis_element(2,0, zxomc + ys);
+ m.set_basis_element(2,1, yzomc - xs);
+ m.set_basis_element(2,2, zzomc + c );
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D rotation from a quaternion
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a rotation matrix from a quaternion */
+template < typename E, class A, class B, class L, class QuatT > void
+matrix_rotation_quaternion(matrix<E,A,B,L>& m, const QuatT& q)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef QuatT quaternion_type;
+ typedef typename quaternion_type::order_type order_type;
+ typedef typename matrix_type::value_type value_type;
+
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckQuat(q);
+
+ identity_transform(m);
+
+ value_type x2 = q[X] + q[X];
+ value_type y2 = q[Y] + q[Y];
+ value_type z2 = q[Z] + q[Z];
+
+ value_type xx2 = q[X] * x2;
+ value_type yy2 = q[Y] * y2;
+ value_type zz2 = q[Z] * z2;
+ value_type xy2 = q[X] * y2;
+ value_type yz2 = q[Y] * z2;
+ value_type zx2 = q[Z] * x2;
+ value_type xw2 = q[W] * x2;
+ value_type yw2 = q[W] * y2;
+ value_type zw2 = q[W] * z2;
+
+ m.set_basis_element(0,0, value_type(1) - yy2 - zz2);
+ m.set_basis_element(0,1, xy2 + zw2);
+ m.set_basis_element(0,2, zx2 - yw2);
+ m.set_basis_element(1,0, xy2 - zw2);
+ m.set_basis_element(1,1, value_type(1) - zz2 - xx2);
+ m.set_basis_element(1,2, yz2 + xw2);
+ m.set_basis_element(2,0, zx2 + yw2);
+ m.set_basis_element(2,1, yz2 - xw2);
+ m.set_basis_element(2,2, value_type(1) - xx2 - yy2);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D rotation from Euler angles
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a rotation matrix from an Euler-angle triple
+ *
+ * The rotations are applied about the cardinal axes in the order specified by
+ * the 'order' argument, where 'order' is one of the following enumerants:
+ *
+ * euler_order_xyz
+ * euler_order_xzy
+ * euler_order_xyx
+ * euler_order_xzx
+ * euler_order_yzx
+ * euler_order_yxz
+ * euler_order_yzy
+ * euler_order_yxy
+ * euler_order_zxy
+ * euler_order_zyx
+ * euler_order_zxz
+ * euler_order_zyz
+ */
+
+template < typename E, class A, class B, class L > void
+matrix_rotation_euler(matrix<E,A,B,L>& m, E angle_0, E angle_1, E angle_2,
+ EulerOrder order)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+
+ identity_transform(m);
+
+ size_t i, j, k;
+ bool odd, repeat;
+ detail::unpack_euler_order(order, i, j, k, odd, repeat);
+
+ if (odd) {
+ angle_0 = -angle_0;
+ angle_1 = -angle_1;
+ angle_2 = -angle_2;
+ }
+
+ value_type s0 = std::sin(angle_0);
+ value_type c0 = std::cos(angle_0);
+ value_type s1 = std::sin(angle_1);
+ value_type c1 = std::cos(angle_1);
+ value_type s2 = std::sin(angle_2);
+ value_type c2 = std::cos(angle_2);
+
+ value_type s0s2 = s0 * s2;
+ value_type s0c2 = s0 * c2;
+ value_type c0s2 = c0 * s2;
+ value_type c0c2 = c0 * c2;
+
+ if (repeat) {
+ m.set_basis_element(i,i, c1 );
+ m.set_basis_element(i,j, s1 * s2 );
+ m.set_basis_element(i,k,-s1 * c2 );
+ m.set_basis_element(j,i, s0 * s1 );
+ m.set_basis_element(j,j,-c1 * s0s2 + c0c2);
+ m.set_basis_element(j,k, c1 * s0c2 + c0s2);
+ m.set_basis_element(k,i, c0 * s1 );
+ m.set_basis_element(k,j,-c1 * c0s2 - s0c2);
+ m.set_basis_element(k,k, c1 * c0c2 - s0s2);
+ } else {
+ m.set_basis_element(i,i, c1 * c2 );
+ m.set_basis_element(i,j, c1 * s2 );
+ m.set_basis_element(i,k,-s1 );
+ m.set_basis_element(j,i, s1 * s0c2 - c0s2);
+ m.set_basis_element(j,j, s1 * s0s2 + c0c2);
+ m.set_basis_element(j,k, s0 * c1 );
+ m.set_basis_element(k,i, s1 * c0c2 + s0s2);
+ m.set_basis_element(k,j, s1 * c0s2 - s0c2);
+ m.set_basis_element(k,k, c0 * c1 );
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D rotation to align with a vector, multiple vectors, or the view plane
+//////////////////////////////////////////////////////////////////////////////
+
+/** See vector_ortho.h for details */
+template < typename E,class A,class B,class L,class VecT_1,class VecT_2 > void
+matrix_rotation_align(
+ matrix<E,A,B,L>& m,
+ const VecT_1& align,
+ const VecT_2& reference,
+ bool normalize = true,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef vector< E,fixed<3> > vector_type;
+
+ identity_transform(m);
+
+ vector_type x, y, z;
+
+ orthonormal_basis(align, reference, x, y, z, normalize, order);
+ matrix_set_basis_vectors(m, x, y, z);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_rotation_align(matrix<E,A,B,L>& m, const VecT& align,
+ bool normalize = true, AxisOrder order = axis_order_zyx)
+{
+ typedef vector< E,fixed<3> > vector_type;
+
+ identity_transform(m);
+
+ vector_type x, y, z;
+
+ orthonormal_basis(align, x, y, z, normalize, order);
+ matrix_set_basis_vectors(m, x, y, z);
+}
+
+/** See vector_ortho.h for details */
+template < typename E,class A,class B,class L,class VecT_1,class VecT_2 > void
+matrix_rotation_align_axial(matrix<E,A,B,L>& m, const VecT_1& align,
+ const VecT_2& axis, bool normalize = true,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef vector< E,fixed<3> > vector_type;
+
+ identity_transform(m);
+
+ vector_type x, y, z;
+
+ orthonormal_basis_axial(align, axis, x, y, z, normalize, order);
+ matrix_set_basis_vectors(m, x, y, z);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L, class MatT > void
+matrix_rotation_align_viewplane(
+ matrix<E,A,B,L>& m,
+ const MatT& view_matrix,
+ Handedness handedness,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef vector< E, fixed<3> > vector_type;
+
+ identity_transform(m);
+
+ vector_type x, y, z;
+
+ orthonormal_basis_viewplane(view_matrix, x, y, z, handedness, order);
+ matrix_set_basis_vectors(m, x, y, z);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L, class MatT > void
+matrix_rotation_align_viewplane_LH(
+ matrix<E,A,B,L>& m,
+ const MatT& view_matrix,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_align_viewplane(
+ m,view_matrix,left_handed,order);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L, class MatT > void
+matrix_rotation_align_viewplane_RH(
+ matrix<E,A,B,L>& m,
+ const MatT& view_matrix,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_align_viewplane(
+ m,view_matrix,right_handed,order);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D rotation to aim at a target
+//////////////////////////////////////////////////////////////////////////////
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_rotation_aim_at(
+ matrix<E,A,B,L>& m,
+ const VecT_1& pos,
+ const VecT_2& target,
+ const VecT_3& reference,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_align(m, target - pos, reference, true, order);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2 > void
+matrix_rotation_aim_at(
+ matrix<E,A,B,L>& m,
+ const VecT_1& pos,
+ const VecT_2& target,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_align(m, target - pos, true, order);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_rotation_aim_at_axial(
+ matrix<E,A,B,L>& m,
+ const VecT_1& pos,
+ const VecT_2& target,
+ const VecT_3& axis,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_align_axial(m, target - pos, axis, true, order);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D rotation
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D rotation */
+template < typename E, class A, class B, class L > void
+matrix_rotation_2D( matrix<E,A,B,L>& m, E angle)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+
+ value_type s = value_type(std::sin(angle));
+ value_type c = value_type(std::cos(angle));
+
+ identity_transform(m);
+
+ m.set_basis_element(0,0, c);
+ m.set_basis_element(0,1, s);
+ m.set_basis_element(1,0,-s);
+ m.set_basis_element(1,1, c);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D rotation to align with a vector
+//////////////////////////////////////////////////////////////////////////////
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_rotation_align_2D(matrix<E,A,B,L>& m, const VecT& align,
+ bool normalize = true, AxisOrder2D order = axis_order_xy)
+{
+ typedef vector< E, fixed<2> > vector_type;
+
+ identity_transform(m);
+
+ vector_type x, y;
+
+ orthonormal_basis_2D(align, x, y, normalize, order);
+ matrix_set_basis_vectors_2D(m, x, y);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D relative rotation about world axes
+//////////////////////////////////////////////////////////////////////////////
+
+/** Rotate a rotation matrix about the given world axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_world_axis(matrix<E,A,B,L>& m, size_t axis, E angle)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ value_type s = value_type(std::sin(angle));
+ value_type c = value_type(std::cos(angle));
+
+ value_type ij = c * m.basis_element(i,j) - s * m.basis_element(i,k);
+ value_type jj = c * m.basis_element(j,j) - s * m.basis_element(j,k);
+ value_type kj = c * m.basis_element(k,j) - s * m.basis_element(k,k);
+
+ m.set_basis_element(i,k, s*m.basis_element(i,j) + c*m.basis_element(i,k));
+ m.set_basis_element(j,k, s*m.basis_element(j,j) + c*m.basis_element(j,k));
+ m.set_basis_element(k,k, s*m.basis_element(k,j) + c*m.basis_element(k,k));
+
+ m.set_basis_element(i,j,ij);
+ m.set_basis_element(j,j,jj);
+ m.set_basis_element(k,j,kj);
+}
+
+/** Rotate a rotation matrix about the world x axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_world_x(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotate_about_world_axis(m,0,angle);
+}
+
+/** Rotate a rotation matrix about the world y axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_world_y(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotate_about_world_axis(m,1,angle);
+}
+
+/** Rotate a rotation matrix about the world z axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_world_z(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotate_about_world_axis(m,2,angle);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D relative rotation about local axes
+//////////////////////////////////////////////////////////////////////////////
+
+/** Rotate a rotation matrix about the given local axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_local_axis(matrix<E,A,B,L>& m, size_t axis, E angle)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ value_type s = value_type(std::sin(angle));
+ value_type c = value_type(std::cos(angle));
+
+ value_type j0 = c * m.basis_element(j,0) + s * m.basis_element(k,0);
+ value_type j1 = c * m.basis_element(j,1) + s * m.basis_element(k,1);
+ value_type j2 = c * m.basis_element(j,2) + s * m.basis_element(k,2);
+
+ m.set_basis_element(k,0, c*m.basis_element(k,0) - s*m.basis_element(j,0));
+ m.set_basis_element(k,1, c*m.basis_element(k,1) - s*m.basis_element(j,1));
+ m.set_basis_element(k,2, c*m.basis_element(k,2) - s*m.basis_element(j,2));
+
+ m.set_basis_element(j,0,j0);
+ m.set_basis_element(j,1,j1);
+ m.set_basis_element(j,2,j2);
+}
+
+/** Rotate a rotation matrix about its local x axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_local_x(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotate_about_local_axis(m,0,angle);
+}
+
+/** Rotate a rotation matrix about its local y axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_local_y(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotate_about_local_axis(m,1,angle);
+}
+
+/** Rotate a rotation matrix about its local z axis */
+template < typename E, class A, class B, class L > void
+matrix_rotate_about_local_z(matrix<E,A,B,L>& m, E angle) {
+ matrix_rotate_about_local_axis(m,2,angle);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D relative rotation
+//////////////////////////////////////////////////////////////////////////////
+
+template < typename E, class A, class B, class L > void
+matrix_rotate_2D(matrix<E,A,B,L>& m, E angle)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+
+ value_type s = value_type(std::sin(angle));
+ value_type c = value_type(std::cos(angle));
+
+ value_type m00 = c * m.basis_element(0,0) - s * m.basis_element(0,1);
+ value_type m10 = c * m.basis_element(1,0) - s * m.basis_element(1,1);
+
+ m.set_basis_element(0,1, s*m.basis_element(0,0) + c*m.basis_element(0,1));
+ m.set_basis_element(1,1, s*m.basis_element(1,0) + c*m.basis_element(1,1));
+
+ m.set_basis_element(0,0,m00);
+ m.set_basis_element(1,0,m10);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation from vector to vector
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a rotation matrix to rotate from one vector to another
+ *
+ * Note: The quaternion algorithm is more stable than the matrix algorithm, so
+ * we simply pass off to the quaternion function here.
+ */
+template < class E,class A,class B,class L,class VecT_1,class VecT_2 > void
+matrix_rotation_vec_to_vec(
+ matrix<E,A,B,L>& m,
+ const VecT_1& v1,
+ const VecT_2& v2,
+ bool unit_length_vectors = false)
+{
+ typedef quaternion< E,fixed<>,vector_first,positive_cross >
+ quaternion_type;
+
+ quaternion_type q;
+ quaternion_rotation_vec_to_vec(q,v1,v2,unit_length_vectors);
+ matrix_rotation_quaternion(m,q);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Scale the angle of a rotation matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Scale the angle of a 3D rotation matrix */
+template < typename E, class A, class B, class L > void
+matrix_scale_rotation_angle(matrix<E,A,B,L>& m, E t,
+ E tolerance = epsilon<E>::placeholder())
+{
+ typedef vector< E,fixed<3> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ vector_type axis;
+ value_type angle;
+ matrix_to_axis_angle(m, axis, angle, tolerance);
+ matrix_rotation_axis_angle(m, axis, angle * t);
+}
+
+/** Scale the angle of a 2D rotation matrix */
+template < typename E, class A, class B, class L > void
+matrix_scale_rotation_angle_2D(
+ matrix<E,A,B,L>& m, E t, E tolerance = epsilon<E>::placeholder())
+{
+ typedef vector< E,fixed<2> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ value_type angle = matrix_to_rotation_2D(m);
+ matrix_rotation_2D(m, angle * t);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Support functions for uniform handling of row- and column-basis matrices
+//////////////////////////////////////////////////////////////////////////////
+
+/* Note: The matrix rotation slerp, difference and concatenation functions do
+ * not use et::MatrixPromote<M1,M2>::temporary_type as the return type, even
+ * though that is the return type of the underlying matrix multiplication.
+ * This is because the sizes of these matrices are known at compile time (3x3
+ * and 2x2), and using fixed<> obviates the need for resizing of intermediate
+ * temporaries.
+ *
+ * Also, no size- or type-checking is done on the arguments to these
+ * functions, as any such errors will be caught by the matrix multiplication
+ * and assignment to the 3x3 temporary.
+ */
+
+/** A fixed-size temporary 3x3 matrix */
+#define MAT_TEMP_3X3 matrix< \
+ typename et::ScalarPromote< \
+ typename MatT_1::value_type, \
+ typename MatT_2::value_type \
+ >::type, \
+ fixed<3,3>, \
+ typename MatT_1::basis_orient, \
+ row_major \
+>
+
+/** A fixed-size temporary 2x2 matrix */
+#define MAT_TEMP_2X2 matrix< \
+ typename et::ScalarPromote< \
+ typename MatT_1::value_type, \
+ typename MatT_2::value_type \
+ >::type, \
+ fixed<2,2>, \
+ typename MatT_1::basis_orient, \
+ row_major \
+>
+
+namespace detail {
+
+/** Concatenate two 3D row-basis rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_3X3
+matrix_concat_rotations(const MatT_1& m1, const MatT_2& m2, row_basis) {
+ return m1*m2;
+}
+
+/** Concatenate two 3D col-basis rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_3X3
+matrix_concat_rotations(const MatT_1& m1, const MatT_2& m2, col_basis) {
+ return m2*m1;
+}
+
+/** Concatenate two 3D rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_3X3
+matrix_concat_rotations(const MatT_1& m1, const MatT_2& m2) {
+ return matrix_concat_rotations(m1,m2,typename MatT_1::basis_orient());
+}
+
+/** Concatenate two 2D row-basis rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_2X2
+matrix_concat_rotations_2D(const MatT_1& m1, const MatT_2& m2, row_basis) {
+ return m1*m2;
+}
+
+/** Concatenate two 2D col-basis rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_2X2
+matrix_concat_rotations_2D(const MatT_1& m1, const MatT_2& m2, col_basis) {
+ return m2*m1;
+}
+
+/** Concatenate two 2D rotation matrices in the order m1->m2 */
+template < class MatT_1, class MatT_2 > MAT_TEMP_2X2
+matrix_concat_rotations_2D(const MatT_1& m1, const MatT_2& m2) {
+ return matrix_concat_rotations_2D(m1,m2,typename MatT_1::basis_orient());
+}
+
+} // namespace detail
+
+//////////////////////////////////////////////////////////////////////////////
+// Matrix rotation difference
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return the rotational 'difference' between two 3D rotation matrices */
+template < class MatT_1, class MatT_2 > MAT_TEMP_3X3
+matrix_rotation_difference(const MatT_1& m1, const MatT_2& m2) {
+ return detail::matrix_concat_rotations(transpose(m1),m2);
+}
+
+/** Return the rotational 'difference' between two 2D rotation matrices */
+template < class MatT_1, class MatT_2 > MAT_TEMP_2X2
+matrix_rotation_difference_2D(const MatT_1& m1, const MatT_2& m2) {
+ return detail::matrix_concat_rotations_2D(transpose(m1),m2);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Spherical linear interpolation of rotation matrices
+//////////////////////////////////////////////////////////////////////////////
+
+/* @todo: It might be as fast or faster to simply convert the matrices to
+ * quaternions, interpolate, and convert back.
+ *
+ * @todo: The behavior of matrix slerp is currently a little different than
+ * for quaternions: in the matrix function, when the two matrices are close
+ * to identical the first is returned, while in the quaternion function the
+ * quaternions are nlerp()'d in this case.
+ *
+ * I still need to do the equivalent of nlerp() for matrices, in which case
+ * these functions could be revised to pass off to nlerp() when the matrices
+ * are nearly aligned.
+*/
+
+/** Spherical linear interpolation of two 3D rotation matrices */
+template < class MatT_1, class MatT_2, typename E > MAT_TEMP_3X3
+matrix_slerp(const MatT_1& m1, const MatT_2& m2, E t,
+ E tolerance = epsilon<E>::placeholder())
+{
+ typedef MAT_TEMP_3X3 temporary_type;
+
+ temporary_type m = matrix_rotation_difference(m1,m2);
+ matrix_scale_rotation_angle(m,t,tolerance);
+ return detail::matrix_concat_rotations(m1,m);
+}
+
+/** Spherical linear interpolation of two 2D rotation matrices */
+template < class MatT_1, class MatT_2, typename E > MAT_TEMP_2X2
+matrix_slerp_2D(const MatT_1& m1, const MatT_2& m2, E t,
+ E tolerance = epsilon<E>::placeholder())
+{
+ typedef MAT_TEMP_2X2 temporary_type;
+
+ temporary_type m = matrix_rotation_difference_2D(m1,m2);
+ matrix_scale_rotation_angle_2D(m,t,tolerance);
+ return detail::matrix_concat_rotations_2D(m1,m);
+}
+
+#undef MAT_TEMP_3X3
+#undef MAT_TEMP_2X2
+
+//////////////////////////////////////////////////////////////////////////////
+// Conversions
+//////////////////////////////////////////////////////////////////////////////
+
+/** Convert a 3D rotation matrix to an axis-angle pair */
+template < class MatT, typename E, class A > void
+matrix_to_axis_angle(
+ const MatT& m,
+ vector<E,A >& axis,
+ E& angle,
+ E tolerance = epsilon<E>::placeholder())
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+
+ axis.set(
+ m.basis_element(1,2) - m.basis_element(2,1),
+ m.basis_element(2,0) - m.basis_element(0,2),
+ m.basis_element(0,1) - m.basis_element(1,0)
+ );
+ value_type l = length(axis);
+ value_type tmo = trace_3x3(m) - value_type(1);
+
+ if (l > tolerance) {
+ axis /= l;
+ angle = std::atan2(l, tmo); // l=2sin(theta),tmo=2cos(theta)
+ } else if (tmo > value_type(0)) {
+ axis.zero();
+ angle = value_type(0);
+ } else {
+ size_t largest_diagonal_element =
+ index_of_max(
+ m.basis_element(0,0),
+ m.basis_element(1,1),
+ m.basis_element(2,2)
+ );
+ size_t i, j, k;
+ cyclic_permutation(largest_diagonal_element, i, j, k);
+ axis[i] =
+ std::sqrt(
+ m.basis_element(i,i) -
+ m.basis_element(j,j) -
+ m.basis_element(k,k) +
+ value_type(1)
+ ) * value_type(.5);
+ value_type s = value_type(.5) / axis[i];
+ axis[j] = m.basis_element(i,j) * s;
+ axis[k] = m.basis_element(i,k) * s;
+ angle = constants<value_type>::pi();
+ }
+}
+
+/** Convert a 3D rotation matrix to an Euler-angle triple */
+template < class MatT, typename Real >
+void matrix_to_euler(
+ const MatT& m,
+ Real& angle_0,
+ Real& angle_1,
+ Real& angle_2,
+ EulerOrder order,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+
+ size_t i, j, k;
+ bool odd, repeat;
+ detail::unpack_euler_order(order, i, j, k, odd, repeat);
+
+ if (repeat) {
+ value_type s1 = length(m.basis_element(j,i),m.basis_element(k,i));
+ value_type c1 = m.basis_element(i,i);
+
+ angle_1 = std::atan2(s1, c1);
+ if (s1 > tolerance) {
+ angle_0 = std::atan2(m.basis_element(j,i),m.basis_element(k,i));
+ angle_2 = std::atan2(m.basis_element(i,j),-m.basis_element(i,k));
+ } else {
+ angle_0 = value_type(0);
+ angle_2 = sign(c1) *
+ std::atan2(-m.basis_element(k,j),m.basis_element(j,j));
+ }
+ } else {
+ value_type s1 = -m.basis_element(i,k);
+ value_type c1 = length(m.basis_element(i,i),m.basis_element(i,j));
+
+ angle_1 = std::atan2(s1, c1);
+ if (c1 > tolerance) {
+ angle_0 = std::atan2(m.basis_element(j,k),m.basis_element(k,k));
+ angle_2 = std::atan2(m.basis_element(i,j),m.basis_element(i,i));
+ } else {
+ angle_0 = value_type(0);
+ angle_2 = -sign(s1) *
+ std::atan2(-m.basis_element(k,j),m.basis_element(j,j));
+ }
+ }
+
+ if (odd) {
+ angle_0 = -angle_0;
+ angle_1 = -angle_1;
+ angle_2 = -angle_2;
+ }
+}
+
+/** Convert a 2D rotation matrix to a rotation angle */
+template < class MatT > typename MatT::value_type
+matrix_to_rotation_2D(const MatT& m)
+{
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+
+ return std::atan2(m.basis_element(0,1),m.basis_element(0,0));
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_transform_h
+#define matrix_transform_h
+
+#include <cml/mathlib/matrix_basis.h>
+#include <cml/mathlib/matrix_rotation.h>
+#include <cml/mathlib/matrix_translation.h>
+
+/* Functions for building matrix transforms other than rotations
+ * (matrix_rotation.h) and viewing projections (matrix_projection.h).
+ */
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D translation
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 3D translation */
+template < typename E, class A, class B, class L > void
+matrix_translation(matrix<E,A,B,L>& m, E x, E y, E z)
+{
+ identity_transform(m);
+ matrix_set_translation(m,x,y,z);
+}
+
+/** Build a matrix representing a 3D translation with z set to 0 */
+template < typename E, class A, class B, class L > void
+matrix_translation(matrix<E,A,B,L>& m, E x, E y)
+{
+ identity_transform(m);
+ matrix_set_translation(m,x,y);
+}
+
+/** Build a matrix representing a 3D translation */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_translation(matrix<E,A,B,L>& m, const VecT& translation)
+{
+ identity_transform(m);
+ matrix_set_translation(m,translation);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D translation
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D translation */
+template < typename E, class A, class B, class L > void
+matrix_translation_2D(matrix<E,A,B,L>& m, E x, E y)
+{
+ identity_transform(m);
+ matrix_set_translation_2D(m,x,y);
+}
+
+/** Build a matrix representing a 2D translation */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_translation_2D(matrix<E,A,B,L>& m, const VecT& translation)
+{
+ identity_transform(m);
+ matrix_set_translation_2D(m, translation);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D scale
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a uniform 3D scale */
+template < typename E, class A, class B, class L > void
+matrix_uniform_scale(matrix<E,A,B,L>& m, E scale) {
+ matrix_scale(m,scale,scale,scale);
+}
+
+/** Build a matrix representing a non-uniform 3D scale */
+template < typename E, class A, class B, class L > void
+matrix_scale(matrix<E,A,B,L>& m, E scale_x, E scale_y, E scale_z)
+{
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+
+ identity_transform(m);
+
+ m.set_basis_element(0,0,scale_x);
+ m.set_basis_element(1,1,scale_y);
+ m.set_basis_element(2,2,scale_z);
+}
+
+/** Build a matrix representing a non-uniform 3D scale */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_scale(matrix<E,A,B,L>& m, const VecT& scale)
+{
+ /* Checking */
+ detail::CheckVec3(scale);
+
+ matrix_scale(m, scale[0], scale[1], scale[2]);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D scale
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a uniform 2D scale */
+template < typename E, class A, class B, class L > void
+matrix_uniform_scale_2D(matrix<E,A,B,L>& m, E scale) {
+ matrix_scale_2D(m,scale,scale);
+}
+
+/** Build a matrix representing a non-uniform 2D scale */
+template < typename E, class A, class B, class L > void
+matrix_scale_2D(matrix<E,A,B,L>& m, E scale_x, E scale_y)
+{
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+
+ identity_transform(m);
+
+ m.set_basis_element(0,0,scale_x);
+ m.set_basis_element(1,1,scale_y);
+}
+
+/** Build a matrix representing a non-uniform 2D scale */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_scale_2D(matrix<E,A,B,L>& m, const VecT& scale)
+{
+ /* Checking */
+ detail::CheckVec2(scale);
+
+ matrix_scale_2D(m, scale[0], scale[1]);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D scale along axis
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 3D scale along an arbitrary axis */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_scale_along_axis(matrix<E,A,B,L>&m, const VecT& axis, E scale)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec3(axis);
+
+ matrix<E,fixed<3,3>,B,L> outer_p = outer(axis,axis)*(scale-value_type(1));
+ outer_p(0,0) += value_type(1);
+ outer_p(1,1) += value_type(1);
+ outer_p(2,2) += value_type(1);
+
+ matrix_linear_transform(m, outer_p);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D scale along axis
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D scale along an arbitrary axis */
+template < typename E, class A, class B, class L, class VecT >
+void matrix_scale_along_axis_2D(matrix<E,A,B,L>& m, const VecT& axis,
+ E scale)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec2(axis);
+
+ matrix<E,fixed<2,2>,B,L> outer_p = outer(axis,axis)*(scale-value_type(1));
+ outer_p(0,0) += value_type(1);
+ outer_p(1,1) += value_type(1);
+
+ matrix_linear_transform_2D(m, outer_p);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D shear
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 3D shear along the specified world axis */
+template < typename E, class A, class B, class L > void
+matrix_shear(matrix<E,A,B,L>& m, size_t axis, E shear_s, E shear_t)
+{
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(axis);
+
+ identity_transform(m);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ m.set_basis_element(i,j,shear_s);
+ m.set_basis_element(i,k,shear_t);
+}
+
+/** Build a matrix representing a 3D shear along the world x axis */
+template < typename E, class A, class B, class L > void
+matrix_shear_x(matrix<E,A,B,L>& m, E shear_s, E shear_t) {
+ matrix_shear(m,0,shear_s,shear_t);
+}
+
+/** Build a matrix representing a 3D shear along the world y axis */
+template < typename E, class A, class B, class L > void
+matrix_shear_y(matrix<E,A,B,L>& m, E shear_s, E shear_t) {
+ matrix_shear(m,1,shear_s,shear_t);
+}
+
+/** Build a matrix representing a 3D shear along the world z axis */
+template < typename E, class A, class B, class L > void
+matrix_shear_z(matrix<E,A,B,L>& m, E shear_s, E shear_t) {
+ matrix_shear(m,2,shear_s,shear_t);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D shear
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D shear along the specified world axis */
+template < typename E, class A, class B, class L > void
+matrix_shear_2D(matrix<E,A,B,L>& m, size_t axis, E shear)
+{
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckIndex2(axis);
+
+ identity_transform(m);
+
+ size_t i, j;
+ cyclic_permutation(axis, i, j);
+
+ m.set_basis_element(i,j,shear);
+}
+
+/** Build a matrix representing a 2D shear along the world x axis */
+template < typename E, class A, class B, class L > void
+matrix_shear_x_2D(matrix<E,A,B,L>& m, E shear) {
+ matrix_shear_2D(m,0,shear);
+}
+
+/** Build a matrix representing a 2D shear along the world y axis */
+template < typename E, class A, class B, class L > void
+matrix_shear_y_2D(matrix<E,A,B,L>& m, E shear) {
+ matrix_shear_2D(m,1,shear);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D reflection
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 3D reflection along the given world axis */
+template < typename E, class A, class B, class L > void
+matrix_reflect(matrix<E,A,B,L>& m, size_t axis)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(axis);
+
+ identity_transform(m);
+
+ m(axis,axis) = value_type(-1);
+}
+
+/** Build a matrix representing a 3D reflection along the world x axis */
+template < typename E, class A, class B, class L > void
+matrix_reflect_x(matrix<E,A,B,L>& m) {
+ matrix_reflect(m,0);
+}
+
+/** Build a matrix representing a 3D reflection along the world y axis */
+template < typename E, class A, class B, class L > void
+matrix_reflect_y(matrix<E,A,B,L>& m) {
+ matrix_reflect(m,1);
+}
+
+/** Build a matrix representing a 3D reflection along the world z axis */
+template < typename E, class A, class B, class L > void
+matrix_reflect_z(matrix<E,A,B,L>& m) {
+ matrix_reflect(m,2);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D reflection
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D reflection along the given world axis */
+template < typename E, class A, class B, class L > void
+matrix_reflect_2D(matrix<E,A,B,L>& m, size_t axis)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckIndex2(axis);
+
+ identity_transform(m);
+
+ m(axis,axis) = value_type(-1);
+}
+
+/** Build a matrix representing a 2D reflection along the world x axis */
+template < typename E, class A, class B, class L > void
+matrix_reflect_x_2D(matrix<E,A,B,L>& m) {
+ matrix_reflect_2D(m,0);
+}
+
+/** Build a matrix representing a 2D reflection along the world y axis */
+template < typename E, class A, class B, class L > void
+matrix_reflect_y_2D(matrix<E,A,B,L>& m) {
+ matrix_reflect_2D(m,1);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D reflection about hyperplane
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 3D reflection about the given hyperplane */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_reflect_about_hplane(matrix<E,A,B,L>& m, const VecT& normal)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ matrix_scale_along_axis(m, normal, value_type(-1));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D reflection about hyperplane
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D reflection about the given hyperplane */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_reflect_about_hplane_2D(matrix<E,A,B,L>&m, const VecT& normal)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ matrix_scale_along_axis_2D(m, normal, value_type(-1));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D orthographic projection to cardinal hyperplane
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing an orthographic projection onto a plane */
+template < typename E, class A, class B, class L > void
+matrix_ortho_project(matrix<E,A,B,L>& m, size_t axis)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckIndex3(axis);
+
+ identity_transform(m);
+
+ m(axis,axis) = value_type(0);
+}
+
+/** Build a matrix representing an orthographic projection onto the yz plane*/
+template < typename E, class A, class B, class L > void
+matrix_ortho_project_yz(matrix<E,A,B,L>& m) {
+ matrix_ortho_project(m,0);
+}
+
+/** Build a matrix representing an orthographic projection onto the zx plane*/
+template < typename E, class A, class B, class L > void
+matrix_ortho_project_zx(matrix<E,A,B,L>& m) {
+ matrix_ortho_project(m,1);
+}
+
+/** Build a matrix representing an orthographic projection onto the zy plane*/
+template < typename E, class A, class B, class L > void
+matrix_ortho_project_xy(matrix<E,A,B,L>& m) {
+ matrix_ortho_project(m,2);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D orthographic projection to cardinal hyperplane
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D orthographic projection */
+template < typename E, class A, class B, class L > void
+matrix_ortho_project_2D(matrix<E,A,B,L>& m, size_t axis)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckIndex2(axis);
+
+ identity_transform(m);
+
+ m(axis,axis) = value_type(0);
+}
+
+/** Build a matrix representing an orthographic projection onto the y axis */
+template < typename E, class A, class B, class L > void
+matrix_ortho_project_y_2D(matrix<E,A,B,L>& m) {
+ matrix_ortho_project_2D(m,0);
+}
+
+/** Build a matrix representing an orthographic projection onto the x axis */
+template < typename E, class A, class B, class L > void
+matrix_ortho_project_x_2D(matrix<E,A,B,L>& m) {
+ matrix_ortho_project_2D(m,1);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D orthographic projection to hyperplane
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 3D orthographic projection about the given
+ * hyperplane passing through the origin.
+ */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_ortho_project_to_hplane(matrix<E,A,B,L>& m, const VecT& normal)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ matrix_scale_along_axis(m, normal, value_type(0));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D orthographic projection to hyperplane
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 2D orthographic projection about the given
+ * hyperplane passing through the origin.
+ */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_ortho_project_to_hplane_2D(matrix<E,A,B,L>& m, const VecT& normal)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ matrix_scale_along_axis_2D(m, normal, value_type(0));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D 'aim at'
+//////////////////////////////////////////////////////////////////////////////
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_aim_at(matrix<E,A,B,L>& m, const VecT_1& pos, const VecT_2& target,
+ const VecT_3& reference,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_aim_at(m, pos, target, reference, order);
+ matrix_set_translation(m, pos);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2 > void
+matrix_aim_at(matrix<E,A,B,L>& m, const VecT_1& pos, const VecT_2& target,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_aim_at(m, pos, target, order);
+ matrix_set_translation(m, pos);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_aim_at_axial(
+ matrix<E,A,B,L>& m,
+ const VecT_1& pos,
+ const VecT_2& target,
+ const VecT_3& axis,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_aim_at_axial(m, pos, target, axis, order);
+ matrix_set_translation(m, pos);
+}
+
+/** See vector_ortho.h for details */
+template < typename E,class A,class B,class L,class VecT,class MatT > void
+matrix_aim_at_viewplane(
+ matrix<E,A,B,L>& m,
+ const VecT& pos,
+ const MatT& view_matrix,
+ Handedness handedness,
+ AxisOrder order = axis_order_zyx)
+{
+ matrix_rotation_align_viewplane(m, view_matrix, handedness, order);
+ matrix_set_translation(m, pos);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D 'aim at'
+//////////////////////////////////////////////////////////////////////////////
+
+/** See vector_ortho.h for details */
+template < typename E,class A,class B,class L,class VecT_1,class VecT_2 > void
+matrix_aim_at_2D(
+ matrix<E,A,B,L>& m,
+ const VecT_1& pos,
+ const VecT_2& target,
+ AxisOrder2D order = axis_order_xy)
+{
+ matrix_rotation_align_2D(m, target - pos, true, order);
+ matrix_set_translation_2D(m, pos);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D 'look at' view matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix representing a 'look at' view transform */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_look_at(
+ matrix<E,A,B,L>& m,
+ const VecT_1& eye,
+ const VecT_2& target,
+ const VecT_3& up,
+ Handedness handedness)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef vector< E,fixed<3> > vector_type;
+ typedef typename matrix_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckMatAffine3D(m);
+
+ identity_transform(m);
+
+ value_type s = handedness == left_handed ? 1 : -1;
+ vector_type z = s * normalize(target - eye);
+ vector_type x = unit_cross(up,z);
+ vector_type y = cross(z,x);
+
+ matrix_set_transposed_basis_vectors(m,x,y,z);
+ matrix_set_translation(m,-dot(eye,x),-dot(eye,y),-dot(eye,z));
+}
+
+/** Build a matrix representing a left-handedness 'look at' view transform */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_look_at_LH(matrix<E,A,B,L>& m, const VecT_1& eye,
+ const VecT_2& target, const VecT_3& up)
+{
+ matrix_look_at(m, eye, target, up, left_handed);
+}
+
+/** Build a matrix representing a right-handedness 'look at' view transform */
+template < typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_look_at_RH(matrix<E,A,B,L>& m, const VecT_1& eye,
+ const VecT_2& target, const VecT_3& up)
+{
+ matrix_look_at(m, eye, target, up, right_handed);
+}
+
+/** Build a matrix representing a 'look at' view transform */
+template < typename E, class A, class B, class L > void
+matrix_look_at(matrix<E,A,B,L>& m, E eye_x, E eye_y, E eye_z, E target_x,
+ E target_y, E target_z, E up_x, E up_y, E up_z,
+ Handedness handedness)
+{
+ typedef vector< E, fixed<3> > vector_type;
+
+ matrix_look_at(m,
+ vector_type(eye_x,eye_y,eye_z),
+ vector_type(target_x,target_y,target_z),
+ vector_type(up_x,up_y,up_z),
+ handedness
+ );
+}
+
+/** Build a matrix representing a left-handed'look at' view transform */
+template < typename E, class A, class B, class L > void
+matrix_look_at_LH(matrix<E,A,B,L>& m, E eye_x, E eye_y, E eye_z,
+ E target_x, E target_y, E target_z, E up_x, E up_y, E up_z)
+{
+ matrix_look_at(m,eye_x,eye_y,eye_z,target_x,target_y,target_z,up_x,up_y,
+ up_z,left_handed);
+}
+
+/** Build a matrix representing a right-handed'look at' view transform */
+template < typename E, class A, class B, class L > void
+matrix_look_at_RH(matrix<E,A,B,L>& m, E eye_x, E eye_y, E eye_z,
+ E target_x, E target_y, E target_z, E up_x, E up_y, E up_z)
+{
+ matrix_look_at(m,eye_x,eye_y,eye_z,target_x,target_y,target_z,up_x,up_y,
+ up_z,right_handed);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D linear transform
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix from the 3x3 linear transform part of another matrix */
+template < typename E, class A, class B, class L, class MatT > void
+matrix_linear_transform(matrix<E,A,B,L>& m, const MatT& linear)
+{
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckMatLinear3D(linear);
+
+ identity_transform(m);
+
+ for(size_t i = 0; i < 3; ++i) {
+ for(size_t j = 0; j < 3; ++j) {
+ m.set_basis_element(i,j,linear.basis_element(i,j));
+ }
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D linear transform
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a matrix from the 2x2 linear transform part of another matrix */
+template < typename E, class A, class B, class L, class MatT > void
+matrix_linear_transform_2D(matrix<E,A,B,L>& m, const MatT& linear)
+{
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckMatLinear2D(linear);
+
+ identity_transform(m);
+
+ for(size_t i = 0; i < 2; ++i) {
+ for(size_t j = 0; j < 2; ++j) {
+ m.set_basis_element(i,j,linear.basis_element(i,j));
+ }
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D affine transform
+//////////////////////////////////////////////////////////////////////////////
+
+/** 3D affine transform from three basis vectors and a translation */
+template <typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3, class VecT_4 > void
+matrix_affine_transform(matrix<E,A,B,L>& m, const VecT_1& x, const VecT_2& y,
+ const VecT_3& z, const VecT_4& translation)
+{
+ identity_transform(m);
+ matrix_set_basis_vectors(m,x,y,z);
+ matrix_set_translation(m,translation);
+}
+
+/** 3D affine transform from a quaternion and a translation */
+template <
+ typename E, class A, class B, class L,
+ typename QE, class QA, class O, class C, class VecT > void
+matrix_affine_transform(
+ matrix<E,A,B,L>& m, const quaternion<QE,QA,O,C>& q,
+ const VecT& translation)
+{
+ matrix_rotation_quaternion(m,q);
+ matrix_set_translation(m,translation);
+}
+
+/** 3D affine transform from a quaternion expression and a translation */
+template < typename E,class A,class B,class L,class XprT,class VecT > void
+matrix_affine_transform(
+ matrix<E,A,B,L>& m, const et::QuaternionXpr<XprT>& q,
+ const VecT& translation)
+{
+ matrix_rotation_quaternion(m,q);
+ matrix_set_translation(m,translation);
+}
+
+/** 3D affine transform from an axis-angle pair and a translation */
+template <
+ typename E, class A, class B, class L, class VecT_1, class VecT_2 > void
+matrix_affine_transform(
+ matrix<E,A,B,L>& m,const VecT_1& axis,E angle,const VecT_2& translation)
+{
+ matrix_rotation_axis_angle(m,axis,angle);
+ matrix_set_translation(m,translation);
+}
+
+/** 3D affine transform from an Euler-angle triple and a translation */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_affine_transform(matrix<E,A,B,L>& m, E angle_0, E angle_1,
+ E angle_2, EulerOrder order, const VecT& translation)
+{
+ matrix_rotation_euler(m,angle_0,angle_1,angle_2,order);
+ matrix_set_translation(m,translation);
+}
+
+/** 3D affine transform from a matrix and a translation */
+template <
+ typename E, class A, class B, class L,
+ typename ME, class MA, class MB, class ML, class VecT > void
+matrix_affine_transform(matrix<E,A,B,L>& m,
+ const matrix<ME,MA,MB,ML>& linear, const VecT& translation)
+{
+ matrix_linear_transform(m,linear);
+ matrix_set_translation(m,translation);
+}
+
+/** 3D affine transform from a matrix expression and a translation */
+template < typename E,class A,class B,class L,class XprT,class VecT > void
+matrix_affine_transform(
+ matrix<E,A,B,L>& m, const et::MatrixXpr<XprT>& linear,
+ const VecT& translation)
+{
+ matrix_linear_transform(m,linear);
+ matrix_set_translation(m,translation);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 2D affine transform
+//////////////////////////////////////////////////////////////////////////////
+
+/** 2D affine transform from two basis vectors and a translation */
+template <typename E, class A, class B, class L,
+ class VecT_1, class VecT_2, class VecT_3 > void
+matrix_affine_transform_2D(matrix<E,A,B,L>& m, const VecT_1& x,
+ const VecT_2& y, const VecT_3& translation)
+{
+ identity_transform(m);
+ matrix_set_basis_vectors_2D(m,x,y);
+ matrix_set_translation_2D(m,translation);
+}
+
+/** 2D affine transform from a rotation angle and a translation */
+template <typename E, class A, class B, class L, class VecT >
+void matrix_affine_transform_2D(matrix<E,A,B,L>& m, E angle,
+ const VecT& translation)
+{
+ matrix_rotation_2D(m,angle);
+ matrix_set_translation_2D(m,translation);
+}
+
+/** 2D affine transform from a matrix and a translation */
+template < typename E,class A,class B,class L,class MatT,class VecT > void
+matrix_affine_transform_2D(
+ matrix<E,A,B,L>& m, const MatT& linear, const VecT& translation)
+{
+ matrix_linear_transform_2D(m, linear);
+ matrix_set_translation_2D(m,translation);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D affine from 2D affine
+//////////////////////////////////////////////////////////////////////////////
+
+/** Construct a 3D affine transform from a 2D affine transform */
+template < typename E, class A, class B, class L, class MatT > void
+matrix_3D_affine_from_2D_affine(matrix<E,A,B,L>& m, const MatT& affine_2D)
+{
+ typedef vector< E, fixed<2> > vector_type;
+
+ vector_type x = matrix_get_x_basis_vector_2D(affine_2D);
+ vector_type y = matrix_get_y_basis_vector_2D(affine_2D);
+ vector_type p = matrix_get_translation_2D(affine_2D);
+
+ identity_transform(m);
+
+ matrix_set_basis_vectors_2D(m,x,y);
+ matrix_set_translation(m,p);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// 3D affine from 3D affine
+//////////////////////////////////////////////////////////////////////////////
+
+/** Construct a 3D affine transform from another 3D affine transform */
+template < typename E, class A, class B, class L, class MatT > void
+matrix_3D_affine_from_3D_affine(matrix<E,A,B,L>& m, const MatT& affine_3D)
+{
+ typedef vector< E, fixed<3> > vector_type;
+
+ vector_type x = matrix_get_x_basis_vector(affine_3D);
+ vector_type y = matrix_get_y_basis_vector(affine_3D);
+ vector_type z = matrix_get_z_basis_vector(affine_3D);
+ vector_type p = matrix_get_translation(affine_3D);
+
+ identity_transform(m);
+
+ matrix_set_basis_vectors(m,x,y,z);
+ matrix_set_translation(m,p);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Matrix decomposition (scale->rotate->translate)
+//////////////////////////////////////////////////////////////////////////////
+
+/* 3x3 matrix version */
+template <
+ class MatT,
+ typename Real,
+ typename ME,
+ class MA,
+ class B,
+ class L,
+ typename VE,
+ class VA
+>
+void matrix_decompose_SRT(
+ const MatT& m,
+ Real& scale_x,
+ Real& scale_y,
+ Real& scale_z,
+ matrix<ME,MA,B,L>& rotation,
+ vector<VE,VA>& translation)
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+ typedef vector<value_type, fixed<3> > vector_type;
+
+ /* Checking */
+ detail::CheckMatAffine3D(m);
+ detail::CheckMatLinear3D(rotation);
+
+ vector_type x, y, z;
+ matrix_get_basis_vectors(m, x, y, z);
+
+ scale_x = x.length();
+ scale_y = y.length();
+ scale_z = z.length();
+
+ x /= scale_x;
+ y /= scale_y;
+ z /= scale_z;
+
+ matrix_set_basis_vectors(rotation, x, y, z);
+ translation = matrix_get_translation(m);
+}
+
+/* Quaternion version */
+template <
+ class MatT,
+ typename Real,
+ typename QE,
+ class QA,
+ class O,
+ class C,
+ typename VE,
+ class VA
+>
+void matrix_decompose_SRT(
+ const MatT& m,
+ Real& scale_x,
+ Real& scale_y,
+ Real& scale_z,
+ quaternion<QE,QA,O,C>& rotation,
+ vector<VE,VA>& translation)
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+ typedef matrix< value_type, fixed<3,3> > rotation_type;
+
+ rotation_type rotation_matrix;
+ matrix_decompose_SRT(
+ m, scale_x, scale_y, scale_z, rotation_matrix, translation);
+ quaternion_rotation_matrix(rotation, rotation_matrix);
+}
+
+/* Euler angle version */
+template < class MatT, typename Real, typename E, class A >
+void matrix_decompose_SRT(
+ const MatT& m,
+ Real& scale_x,
+ Real& scale_y,
+ Real& scale_z,
+ Real& angle_0,
+ Real& angle_1,
+ Real& angle_2,
+ EulerOrder order,
+ vector<E,A>& translation,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+ typedef matrix< value_type, fixed<3,3> > rotation_type;
+
+ rotation_type rotation_matrix;
+ matrix_decompose_SRT(
+ m, scale_x, scale_y, scale_z, rotation_matrix, translation);
+ matrix_to_euler(
+ rotation_matrix, angle_0, angle_1, angle_2, order, tolerance);
+}
+
+/* Axis-angle version */
+template < class MatT, typename Real, typename E, class A >
+void matrix_decompose_SRT(
+ const MatT& m,
+ Real& scale_x,
+ Real& scale_y,
+ Real& scale_z,
+ vector<E,A>& axis,
+ Real& angle,
+ vector<E,A>& translation,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+ typedef matrix< value_type, fixed<3,3> > rotation_type;
+
+ rotation_type rotation_matrix;
+ matrix_decompose_SRT(
+ m, scale_x, scale_y, scale_z, rotation_matrix, translation);
+ matrix_to_axis_angle(rotation_matrix, axis, angle, tolerance);
+}
+
+/* 2x2 matrix version, 2-d */
+template <
+ class MatT,
+ typename Real,
+ typename ME,
+ class MA,
+ class B,
+ class L,
+ typename VE,
+ class VA
+>
+void matrix_decompose_SRT_2D(
+ const MatT& m,
+ Real& scale_x,
+ Real& scale_y,
+ matrix<ME,MA,B,L>& rotation,
+ vector<VE,VA>& translation)
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+ typedef vector<value_type, fixed<2> > vector_type;
+
+ /* Checking */
+ detail::CheckMatAffine2D(m);
+ detail::CheckMatLinear2D(rotation);
+
+ vector_type x, y;
+ matrix_get_basis_vectors_2D(m, x, y);
+
+ scale_x = x.length();
+ scale_y = y.length();
+
+ x /= scale_x;
+ y /= scale_y;
+
+ matrix_set_basis_vectors_2D(rotation, x, y);
+ translation = matrix_get_translation_2D(m);
+}
+
+/* Angle version, 2-d */
+template < class MatT, typename Real, typename E, class A >
+void matrix_decompose_SRT_2D(
+ const MatT& m,
+ Real& scale_x,
+ Real& scale_y,
+ Real& angle,
+ vector<E,A>& translation)
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+ typedef matrix< value_type, fixed<2,2> > rotation_type;
+
+ rotation_type rotation_matrix;
+ matrix_decompose_SRT_2D(
+ m, scale_x, scale_y, rotation_matrix, translation);
+ angle = matrix_to_rotation_2D(rotation_matrix);
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_translation_h
+#define matrix_translation_h
+
+#include <cml/mathlib/checking.h>
+
+/* Functions for getting and setting the translation of a 3D or 2D affine
+ * transform.
+ */
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// Functions for setting the translation of a 3D or 2D affine transform matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Set the translation of a 3D affine transform */
+template < typename E, class A, class B, class L > void
+matrix_set_translation(matrix<E,A,B,L>& m, E x, E y, E z)
+{
+ /* Checking */
+ detail::CheckMatAffine3D(m);
+
+ m.set_basis_element(3,0,x);
+ m.set_basis_element(3,1,y);
+ m.set_basis_element(3,2,z);
+}
+
+/** Set the translation of a 3D affine transform with z set to 0 */
+template < typename E, class A, class B, class L > void
+matrix_set_translation(matrix<E,A,B,L>& m, E x, E y)
+{
+ typedef matrix<E,A,B,L> matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ matrix_set_translation(m, x, y, value_type(0));
+}
+
+/** Set the translation of a 3D affine transform from a 3D or 2D vector */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_translation(matrix<E,A,B,L>& m, const VecT& translation)
+{
+ /* Checking */
+ detail::CheckVec2Or3(translation);
+
+ if (translation.size() == 3) {
+ matrix_set_translation(
+ m,translation[0], translation[1], translation[2]);
+ } else { // translation.size() == 2
+ matrix_set_translation(m, translation[0], translation[1]);
+ }
+}
+
+/** Set the translation of a 2D affine transform */
+template < typename E, class A, class B, class L > void
+matrix_set_translation_2D(matrix<E,A,B,L>& m, E x, E y)
+{
+ /* Checking */
+ detail::CheckMatAffine2D(m);
+
+ m.set_basis_element(2,0,x);
+ m.set_basis_element(2,1,y);
+}
+
+/** Set the translation of a 2D affine transform from a 2D vector */
+template < typename E, class A, class B, class L, class VecT > void
+matrix_set_translation_2D(matrix<E,A,B,L>& m, const VecT& translation)
+{
+ /* Checking */
+ detail::CheckVec2(translation);
+
+ matrix_set_translation_2D(m, translation[0], translation[1]);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Functions for getting the translation of a 3D or 2D affine transform matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Get the translation of a 3D affine transform */
+template < class MatT > vector< typename MatT::value_type, fixed<3> >
+matrix_get_translation(const MatT& m)
+{
+ typedef typename MatT::value_type value_type;
+ typedef vector< value_type, fixed<3> > vector_type;
+
+ /* Checking */
+ detail::CheckMatAffine3D(m);
+
+ return vector_type(
+ m.basis_element(3,0),
+ m.basis_element(3,1),
+ m.basis_element(3,2)
+ );
+}
+
+/** Get the translation of a 2D affine transform */
+template < class MatT > vector< typename MatT::value_type, fixed<2> >
+matrix_get_translation_2D(const MatT& m)
+{
+ typedef typename MatT::value_type value_type;
+ typedef vector< value_type, fixed<2> > vector_type;
+
+ /* Checking */
+ detail::CheckMatAffine2D(m);
+
+ return vector_type(m.basis_element(2,0), m.basis_element(2,1));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Function for getting the translation of a 3D view matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Get the translation of a 3D affine transform */
+template < class MatT > vector< typename MatT::value_type, fixed<3> >
+matrix_get_view_translation(const MatT& m)
+{
+ typedef typename MatT::value_type value_type;
+ typedef vector< value_type, fixed<3> > vector_type;
+
+ vector_type x, y, z;
+ matrix_get_basis_vectors(m,x,y,z);
+ vector_type p = matrix_get_translation(m);
+ return vector_type(-dot(p,x),-dot(p,y),-dot(p,z));
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef misc_h
+#define misc_h
+
+#include <cml/mathlib/checking.h>
+
+/* A few miscellaneous functions and helper classes.
+ *
+ * @note: This is somewhat ad-hoc and will probably all be replaced in a future
+ * version of the CML (I don't think I even bothered to document these functions
+ * on the website).
+ */
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// N-d functions
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return an N-d zero vector */
+template < size_t N >
+vector< double, fixed<N> > zero()
+{
+ typedef vector< double, fixed<N> > vector_type;
+
+ vector_type result;
+ result.zero();
+ return result;
+}
+
+/** Return an N-d cardinal axis by index */
+template < size_t N >
+vector< double, fixed<N> > axis(size_t i)
+{
+ /* Checking */
+ detail::CheckValidArg(i < N);
+
+ typedef vector< double, fixed<N> > vector_type;
+ vector_type result;
+ result.cardinal(i);
+ return result;
+}
+
+/** Return an NxM zero matrix */
+template < size_t N, size_t M >
+matrix< double, fixed<N,M>, row_basis, row_major > zero()
+{
+ typedef matrix< double, fixed<N,M>, row_basis, row_major > matrix_type;
+
+ matrix_type result;
+ result.zero();
+ return result;
+}
+
+/** Return an NxN identity matrix */
+template < size_t N >
+matrix< double, fixed<N,N>, row_basis, row_major > identity()
+{
+ typedef matrix< double, fixed<N,N>, row_basis, row_major > matrix_type;
+
+ matrix_type result;
+ result.identity();
+ return result;
+}
+
+/** Return an NxM identity transform */
+template < size_t N, size_t M >
+matrix< double, fixed<N,M>, row_basis, row_major > identity_transform()
+{
+ typedef matrix< double, fixed<N,M>, row_basis, row_major > matrix_type;
+
+ matrix_type result;
+ identity_transform(result);
+ return result;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Zero vector
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return the 2D zero vector */
+inline vector< double, fixed<2> > zero_2D() {
+ return zero<2>();
+}
+
+/** Return the 3D zero vector */
+inline vector< double, fixed<3> > zero_3D() {
+ return zero<3>();
+}
+
+/** Return the 4D zero vector */
+inline vector< double, fixed<4> > zero_4D() {
+ return zero<4>();
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Cardinal axis
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return a 2D cardinal axis by index */
+inline vector< double, fixed<2> > axis_2D(size_t i) {
+ return axis<2>(i);
+}
+
+/** Return a 3D cardinal axis by index */
+inline vector< double, fixed<3> > axis_3D(size_t i) {
+ return axis<3>(i);
+}
+
+/** Return a the 2D x cardinal axis */
+inline vector< double, fixed<2> > x_axis_2D() {
+ return axis_2D(0);
+}
+
+/** Return a the 2D y cardinal axis */
+inline vector< double, fixed<2> > y_axis_2D() {
+ return axis_2D(1);
+}
+
+/** Return a the 3D x cardinal axis */
+inline vector< double, fixed<3> > x_axis_3D() {
+ return axis_3D(0);
+}
+
+/** Return a the 3D y cardinal axis */
+inline vector< double, fixed<3> > y_axis_3D() {
+ return axis_3D(1);
+}
+
+/** Return a the 3D z cardinal axis */
+inline vector< double, fixed<3> > z_axis_3D() {
+ return axis_3D(2);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Zero matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return the 2x2 zero matrix */
+inline matrix< double, fixed<2,2>, row_basis, row_major > zero_2x2() {
+ return zero<2,2>();
+}
+
+/** Return the 3x3 zero matrix */
+inline matrix< double, fixed<3,3>, row_basis, row_major > zero_3x3() {
+ return zero<3,3>();
+}
+
+/** Return the 4x4 zero matrix */
+inline matrix< double, fixed<4,4>, row_basis, row_major > zero_4x4() {
+ return zero<4,4>();
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Identity matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return the 2x2 identity matrix */
+inline matrix< double, fixed<2,2>, row_basis, row_major > identity_2x2() {
+ return identity<2>();
+}
+
+/** Return the 3x3 identity matrix */
+inline matrix< double, fixed<3,3>, row_basis, row_major > identity_3x3() {
+ return identity<3>();
+}
+
+/** Return the 4x4 identity matrix */
+inline matrix< double, fixed<4,4>, row_basis, row_major > identity_4x4() {
+ return identity<4>();
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Identity transform matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return a 3x2 identity transform */
+inline matrix< double,fixed<3,2>,row_basis,row_major > identity_transform_3x2() {
+ return identity_transform<3,2>();
+}
+
+/** Return a 2x3 identity transform */
+inline matrix< double,fixed<2,3>,col_basis,col_major > identity_transform_2x3() {
+ return identity_transform<2,3>();
+}
+
+/** Return a 4x3 identity transform */
+inline matrix< double,fixed<4,3>,row_basis,row_major > identity_transform_4x3() {
+ return identity_transform<4,3>();
+}
+
+/** Return a 3x4 identity transform */
+inline matrix< double,fixed<3,4>,col_basis,col_major > identity_transform_3x4() {
+ return identity_transform<3,4>();
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef picking_h
+#define picking_h
+
+#include <cml/mathlib/projection.h>
+
+/* Functions for picking with rays, volumes, and drag-enclosed volumes. */
+
+namespace cml {
+
+/* Support function for extracting the near and far depth range values from
+ * a viewport matrix.
+ */
+
+namespace detail {
+
+// NOTE: Changed 'near' and 'far' to 'n' and 'f' to work around windows.h
+// 'near' and 'far' macros.
+
+template < class MatT, typename Real > void
+depth_range_from_viewport_matrix(const MatT& viewport, Real& n, Real& f)
+{
+ detail::CheckMatHomogeneous3D(viewport);
+
+ n = viewport.basis_element(3,2);
+ f = viewport.basis_element(2,2) + n;
+}
+
+} // namespace detail
+
+/* Make a pick ray given screen coordinates and view, projection, and viewport
+ * matrices. The origin of the ray lies in the near plane of the frustum; the
+ * direction vector extends to the far plane if 'normalize' is false, and is
+ * made unit-length if 'normalize' is true (its default value).
+ *
+ * Note that the origin of the ray lies in the near plane rather than
+ * coinciding with the position of the virtual camera, as the latter gives
+ * incorrect results when the projection is orthographic.
+ *
+ * Note also that the screen y coordinate increases from bottom to top rather
+ * than top to bottom. If mouse coordinates are returned in window space where
+ * the y coordinate increases from top to bottom (as is often the case), the
+ * y value should be recomputed as 'y = <window height> - y' before being
+ * submitted to this function.
+ */
+
+template < class MatT_1, class MatT_2, class MatT_3, typename E, class A >
+void make_pick_ray(
+ E pick_x,
+ E pick_y,
+ const MatT_1& view,
+ const MatT_2& projection,
+ const MatT_3& viewport,
+ vector<E,A>& origin,
+ vector<E,A>& direction,
+ bool normalize = true)
+{
+ typedef vector<E,A> vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ // NOTE: Changed 'near' and 'far' to 'n' and 'f' to work around
+ // windows.h 'near' and 'far' macros.
+ value_type n, f;
+ detail::depth_range_from_viewport_matrix(viewport, n, f);
+
+ origin =
+ unproject_point(
+ view,projection,viewport,vector_type(pick_x,pick_y,n)
+ );
+ direction =
+ unproject_point(
+ view,projection,viewport,vector_type(pick_x,pick_y,f)
+ ) - origin;
+ if (normalize) {
+ direction.normalize();
+ }
+}
+
+/* Make a pick volume given the screen coordinates of the center of the
+ * picking rect, the width and height of the picking rect, and view and
+ * projection matrices.
+ *
+ * The volume is loaded into the 'planes' array. The planes are of the form
+ * ax+by+cz+d = 0, and are in the order left, right, bottom, top, near, far.
+ *
+ * The z_clip argument should be either z_clip_neg_one or z_clip_zero, and
+ * should correspond to the near z-clipping range of the projection matrix
+ * argument.
+ *
+ * The 'normalize' argument indicates whether the output planes should be
+ * normalized; its default value is 'true'.
+ *
+ * Note that the screen y coordinate increases from bottom to top rather
+ * than top to bottom. If mouse coordinates are returned in window space where
+ * the y coordinate increases from top to bottom (as is often the case), the
+ * y value should be recomputed as 'y = <window height> - y' before being
+ * submitted to this function.
+ */
+
+template < class MatT_1, class MatT_2, typename Real >
+void make_pick_volume(
+ Real pick_x,
+ Real pick_y,
+ Real pick_width,
+ Real pick_height,
+ Real viewport_x,
+ Real viewport_y,
+ Real viewport_width,
+ Real viewport_height,
+ const MatT_1& view,
+ const MatT_2& projection,
+ Real planes[6][4],
+ ZClip z_clip,
+ bool normalize = true)
+{
+ // FIXME: Should be promoted type...
+ typedef matrix<
+ Real, fixed<4,4>,
+ typename MatT_1::basis_orient, typename MatT_1::layout >
+ matrix_type;
+
+ matrix_type pick;
+ matrix_pick(
+ pick, pick_x, pick_y, pick_width, pick_height,
+ viewport_x, viewport_y, viewport_width, viewport_height
+ );
+ cml::extract_frustum_planes(
+ view,detail::matrix_concat_transforms_4x4(projection,pick),
+ planes,z_clip,normalize);
+}
+
+/* Make a pick volume given two opposite corners of a rectangle in screen
+ * space, and view and projection matrices. The corners of the screen rect
+ * need not be in any particular 'order' with regard to the values of the
+ * coordinates.
+ *
+ * The volume is loaded into the 'planes' array. The planes are of the form
+ * ax+by+cz+d = 0, and are in the order left, right, bottom, top, near, far.
+ *
+ * The z_clip argument should be either z_clip_neg_one or z_clip_zero, and
+ * should correspond to the near z-clipping range of the projection matrix
+ * argument.
+ *
+ * The 'normalize' argument indicates whether the output planes should be
+ * normalized; its default value is 'true'.
+ *
+ * Note that the screen y coordinate increases from bottom to top rather
+ * than top to bottom. If mouse coordinates are returned in window space where
+ * the y coordinate increases from top to bottom (as is often the case), the
+ * y value should be recomputed as 'y = <window height> - y' before being
+ * submitted to this function.
+ */
+
+template < class MatT_1, class MatT_2, typename Real >
+void make_pick_drag_volume(
+ Real pick_x1,
+ Real pick_y1,
+ Real pick_x2,
+ Real pick_y2,
+ Real viewport_x,
+ Real viewport_y,
+ Real viewport_width,
+ Real viewport_height,
+ const MatT_1& view,
+ const MatT_2& projection,
+ Real planes[6][4],
+ ZClip z_clip,
+ bool normalize = true)
+{
+ typedef Real value_type;
+
+ make_pick_volume(
+ (pick_x1+pick_x2)*value_type(.5),
+ (pick_y1+pick_y2)*value_type(.5),
+ std::fabs(pick_x2-pick_x1),
+ std::fabs(pick_y2-pick_y1),
+ viewport_x, viewport_y, viewport_width, viewport_height,
+ view, projection, planes, z_clip, normalize
+ );
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef projection_h
+#define projection_h
+
+#include <cml/mathlib/matrix_concat.h>
+#include <cml/mathlib/vector_transform.h>
+
+/* Functions for projection and 'unprojection' of points in 3D. */
+
+namespace cml {
+
+namespace detail {
+
+template < typename E > void
+divide_by_w(vector< E,fixed<4> >& v) {
+ v *= E(1) / v[3];
+}
+
+} // namespace detail
+
+/* Project a point to screen space using the given model, view, projection,
+ * and viewport matrices. The z value of the returned point is a depth value
+ * in the range specified by the viewport matrix.
+ */
+
+template <class MatT_1, class MatT_2, class MatT_3, class MatT_4, class VecT>
+vector< typename VecT::value_type, fixed<3> > project_point(
+ const MatT_1& model,
+ const MatT_2& view,
+ const MatT_3& projection,
+ const MatT_4& viewport,
+ const VecT& p)
+{
+ return project_point(
+ detail::matrix_concat_transforms_4x4(model,view),
+ projection,
+ viewport,
+ p
+ );
+}
+
+/* Project a point to screen space using the given modelview, projection, and
+ * viewport matrices. The z value of the returned point is a depth value in
+ * the range specified by the viewport matrix.
+ */
+
+template < class MatT_1, class MatT_2, class MatT_3, class VecT >
+vector< typename VecT::value_type, fixed<3> > project_point(
+ const MatT_1& modelview,
+ const MatT_2& projection,
+ const MatT_3& viewport,
+ const VecT& p)
+{
+ typedef vector< typename VecT::value_type, fixed<3> > vector3_type;
+ typedef vector< typename VecT::value_type, fixed<4> > vector4_type;
+ typedef typename vector3_type::value_type value_type;
+
+ detail::CheckVec3(p);
+
+ vector4_type result = transform_vector_4D(
+ detail::matrix_concat_transforms_4x4(
+ modelview,
+ detail::matrix_concat_transforms_4x4(
+ projection,
+ viewport
+ )
+ ),
+ vector4_type(p[0],p[1],p[2],value_type(1))
+ );
+ detail::divide_by_w(result);
+ return vector3_type(result[0],result[1],result[2]);
+}
+
+/* 'Unproject' a point from screen space using the given model, view,
+ * projection, and viewport matrices. The z value of the input point is a
+ * depth value in the range specified by the viewport matrix.
+ */
+
+template <class MatT_1, class MatT_2, class MatT_3, class MatT_4, class VecT>
+vector< typename VecT::value_type, fixed<3> > unproject_point(
+ const MatT_1& model,
+ const MatT_2& view,
+ const MatT_3& projection,
+ const MatT_4& viewport,
+ const VecT& p)
+{
+ return unproject_point(
+ detail::matrix_concat_transforms_4x4(model,view),
+ projection,
+ viewport,
+ p
+ );
+}
+
+/* 'Unproject' a point from screen space using the given modelview,
+ * projection, and viewport matrices. The z value of the input point is a
+ * depth value in the range specified by the viewport matrix.
+ */
+
+template < class MatT_1, class MatT_2, class MatT_3, class VecT >
+vector< typename VecT::value_type, fixed<3> > unproject_point(
+ const MatT_1& modelview,
+ const MatT_2& projection,
+ const MatT_3& viewport,
+ const VecT& p)
+{
+ typedef vector< typename VecT::value_type, fixed<3> > vector3_type;
+ typedef vector< typename VecT::value_type, fixed<4> > vector4_type;
+ typedef typename vector3_type::value_type value_type;
+
+ detail::CheckVec3(p);
+
+ vector4_type result = transform_vector_4D(
+ inverse(
+ detail::matrix_concat_transforms_4x4(
+ modelview,
+ detail::matrix_concat_transforms_4x4(
+ projection,
+ viewport
+ )
+ )
+ ),
+ vector4_type(p[0],p[1],p[2],value_type(1))
+ );
+ detail::divide_by_w(result);
+ return vector3_type(result[0],result[1],result[2]);
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_basis_h
+#define quaternion_basis_h
+
+#include <cml/mathlib/checking.h>
+
+/* Functions for getting the basis vectors of a quaternion rotation. */
+
+namespace cml {
+
+/** Get the i'th basis vector of a quaternion rotation */
+template < class QuatT > vector< typename QuatT::value_type, fixed<3> >
+quaternion_get_basis_vector(const QuatT& q, size_t i)
+{
+ typedef QuatT quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+ typedef vector< value_type, fixed<3> > vector_type;
+
+ /* Checking */
+ detail::CheckQuat(q);
+ detail::CheckIndex3(i);
+
+ size_t j, k;
+ cyclic_permutation(i, i, j, k);
+
+ /* @todo: Clean this up. */
+ const size_t W = order_type::W;
+ const size_t I = order_type::X + i;
+ const size_t J = order_type::X + j;
+ const size_t K = order_type::X + k;
+
+ value_type j2 = q[J] + q[J];
+ value_type k2 = q[K] + q[K];
+
+ /* @todo: use set_permuted() for the following when available. */
+
+ vector_type result;
+ result[i] = value_type(1) - q[J] * j2 - q[K] * k2;
+ result[j] = q[I] * j2 + q[W] * k2;
+ result[k] = q[I] * k2 - q[W] * j2;
+ return result;
+}
+
+/** Get the x basis vector of a quaternion rotation */
+template < class QuatT > vector< typename QuatT::value_type, fixed<3> >
+quaternion_get_x_basis_vector(const QuatT& q) {
+ return quaternion_get_basis_vector(q,0);
+}
+
+/** Get the y basis vector of a quaternion rotation */
+template < class QuatT > vector< typename QuatT::value_type, fixed<3> >
+quaternion_get_y_basis_vector(const QuatT& q) {
+ return quaternion_get_basis_vector(q,1);
+}
+
+/** Get the z basis vector of a quaternion rotation */
+template < class QuatT > vector< typename QuatT::value_type, fixed<3> >
+quaternion_get_z_basis_vector(const QuatT& q) {
+ return quaternion_get_basis_vector(q,2);
+}
+
+/** Get the basis vectors of a quaternion rotation */
+template < class QuatT, typename E, class A > void
+quaternion_get_basis_vectors(
+ const QuatT& q,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ vector<E,A>& z)
+{
+ x = quaternion_get_x_basis_vector(q);
+ y = quaternion_get_y_basis_vector(q);
+ z = quaternion_get_z_basis_vector(q);
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_rotation_h
+#define quaternion_rotation_h
+
+#include <cml/mathlib/checking.h>
+
+/* Functions related to quaternion rotations.
+ *
+ * Note: A number of these functions simply wrap calls to the corresponding
+ * matrix functions. Some of them (the 'aim-at' and 'align' functions in
+ * particular) might be considered a bit superfluous, since the resulting
+ * quaternion will most likely be converted to a matrix at some point anyway.
+ * However, they're included here for completeness, and for convenience in
+ * cases where a quaternion is being used as the primary rotation
+ * representation.
+*/
+
+namespace cml {
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation about world axes
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a quaternion representing a rotation about the given world axis */
+template < class E, class A, class O, class C > void
+quaternion_rotation_world_axis(quaternion<E,A,O,C>& q, size_t axis, E angle)
+{
+ typedef quaternion<E,A,O,C> quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+
+ /* Checking */
+ detail::CheckIndex3(axis);
+
+ q.identity();
+
+ const size_t W = order_type::W;
+ const size_t I = order_type::X + axis;
+
+ angle *= value_type(.5);
+ q[I] = std::sin(angle);
+ q[W] = std::cos(angle);
+}
+
+/** Build a quaternion representing a rotation about the world x axis */
+template < class E, class A, class O, class C > void
+quaternion_rotation_world_x(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotation_world_axis(q,0,angle);
+}
+
+/** Build a quaternion representing a rotation about the world y axis */
+template < class E, class A, class O, class C > void
+quaternion_rotation_world_y(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotation_world_axis(q,1,angle);
+}
+
+/** Build a quaternion representing a rotation about the world z axis */
+template < class E, class A, class O, class C > void
+quaternion_rotation_world_z(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotation_world_axis(q,2,angle);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation from an axis-angle pair
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a quaternion from an axis-angle pair */
+template < class E, class A, class O, class C, class VecT > void
+quaternion_rotation_axis_angle(
+ quaternion<E,A,O,C>& q, const VecT& axis, E angle)
+{
+ typedef quaternion<E,A,O,C> quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+
+ /* Checking */
+ detail::CheckVec3(axis);
+
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+ angle *= value_type(.5);
+
+ /* @todo: If and when we have a set() function that takes a vector and a
+ * scalar, this can be written as:
+ *
+ * q.set(std::cos(angle), axis * std::sin(angle));
+ *
+ * In which case the enum will also not be necessary.
+ */
+
+ q[W] = std::cos(angle);
+ value_type s = std::sin(angle);
+ q[X] = axis[0] * s;
+ q[Y] = axis[1] * s;
+ q[Z] = axis[2] * s;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation from a matrix
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a quaternion from a rotation matrix */
+template < class E, class A, class O, class C, class MatT > void
+quaternion_rotation_matrix(quaternion<E,A,O,C>& q, const MatT& m)
+{
+ typedef quaternion<E,A,O,C> quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+ value_type tr = trace_3x3(m);
+ if (tr >= value_type(0)) {
+ q[W] = std::sqrt(tr + value_type(1)) * value_type(.5);
+ value_type s = value_type(.25) / q[W];
+ q[X] = (m.basis_element(1,2) - m.basis_element(2,1)) * s;
+ q[Y] = (m.basis_element(2,0) - m.basis_element(0,2)) * s;
+ q[Z] = (m.basis_element(0,1) - m.basis_element(1,0)) * s;
+ } else {
+ size_t largest_diagonal_element =
+ index_of_max(
+ m.basis_element(0,0),
+ m.basis_element(1,1),
+ m.basis_element(2,2)
+ );
+ size_t i, j, k;
+ cyclic_permutation(largest_diagonal_element, i, j, k);
+ const size_t I = X + i;
+ const size_t J = X + j;
+ const size_t K = X + k;
+ q[I] =
+ std::sqrt(
+ m.basis_element(i,i) -
+ m.basis_element(j,j) -
+ m.basis_element(k,k) +
+ value_type(1)
+ ) * value_type(.5);
+ value_type s = value_type(.25) / q[I];
+ q[J] = (m.basis_element(i,j) + m.basis_element(j,i)) * s;
+ q[K] = (m.basis_element(i,k) + m.basis_element(k,i)) * s;
+ q[W] = (m.basis_element(j,k) - m.basis_element(k,j)) * s;
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation from Euler angles
+//////////////////////////////////////////////////////////////////////////////
+
+/** Build a quaternion from an Euler-angle triple */
+template < class E, class A, class O, class C > void
+quaternion_rotation_euler(
+ quaternion<E,A,O,C>& q, E angle_0, E angle_1, E angle_2,
+ EulerOrder order)
+{
+ typedef quaternion<E,A,O,C> quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+
+ size_t i, j, k;
+ bool odd, repeat;
+ detail::unpack_euler_order(order, i, j, k, odd, repeat);
+
+ const size_t W = order_type::W;
+ const size_t I = order_type::X + i;
+ const size_t J = order_type::X + j;
+ const size_t K = order_type::X + k;
+
+ if (odd) {
+ angle_1 = -angle_1;
+ }
+
+ angle_0 *= value_type(.5);
+ angle_1 *= value_type(.5);
+ angle_2 *= value_type(.5);
+
+ value_type s0 = std::sin(angle_0);
+ value_type c0 = std::cos(angle_0);
+ value_type s1 = std::sin(angle_1);
+ value_type c1 = std::cos(angle_1);
+ value_type s2 = std::sin(angle_2);
+ value_type c2 = std::cos(angle_2);
+
+ value_type s0s2 = s0 * s2;
+ value_type s0c2 = s0 * c2;
+ value_type c0s2 = c0 * s2;
+ value_type c0c2 = c0 * c2;
+
+ if (repeat) {
+ q[I] = c1 * (c0s2 + s0c2);
+ q[J] = s1 * (c0c2 + s0s2);
+ q[K] = s1 * (c0s2 - s0c2);
+ q[W] = c1 * (c0c2 - s0s2);
+ } else {
+ q[I] = c1 * s0c2 - s1 * c0s2;
+ q[J] = c1 * s0s2 + s1 * c0c2;
+ q[K] = c1 * c0s2 - s1 * s0c2;
+ q[W] = c1 * c0c2 + s1 * s0s2;
+ }
+ if (odd) {
+ q[J] = -q[J];
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation to align with a vector, multiple vectors, or the view plane
+//////////////////////////////////////////////////////////////////////////////
+
+/** See vector_ortho.h for details */
+template < typename E,class A,class O,class C,class VecT_1,class VecT_2 > void
+quaternion_rotation_align(
+ quaternion<E,A,O,C>& q,
+ const VecT_1& align,
+ const VecT_2& reference,
+ bool normalize = true,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_align(m,align,reference,normalize,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class O, class C, class VecT > void
+quaternion_rotation_align(quaternion<E,A,O,C>& q, const VecT& align,
+ bool normalize = true, AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_align(m,align,normalize,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+/** See vector_ortho.h for details */
+template < typename E,class A,class O,class C,class VecT_1,class VecT_2 > void
+quaternion_rotation_align_axial(quaternion<E,A,O,C>& q, const VecT_1& align,
+ const VecT_2& axis, bool normalize = true,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_align_axial(m,align,axis,normalize,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class O, class C, class MatT > void
+quaternion_rotation_align_viewplane(
+ quaternion<E,A,O,C>& q,
+ const MatT& view_matrix,
+ Handedness handedness,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_align_viewplane(m,view_matrix,handedness,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class O, class C, class MatT > void
+quaternion_rotation_align_viewplane_LH(
+ quaternion<E,A,O,C>& q,
+ const MatT& view_matrix,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_align_viewplane_LH(m,view_matrix,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class O, class C, class MatT > void
+quaternion_rotation_align_viewplane_RH(
+ quaternion<E,A,O,C>& q,
+ const MatT& view_matrix,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_align_viewplane_RH(m,view_matrix,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation to aim at a target
+//////////////////////////////////////////////////////////////////////////////
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class O, class C,
+ class VecT_1, class VecT_2, class VecT_3 > void
+quaternion_rotation_aim_at(
+ quaternion<E,A,O,C>& q,
+ const VecT_1& pos,
+ const VecT_2& target,
+ const VecT_3& reference,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_aim_at(m,pos,target,reference,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class O, class C,
+ class VecT_1, class VecT_2 > void
+quaternion_rotation_aim_at(
+ quaternion<E,A,O,C>& q,
+ const VecT_1& pos,
+ const VecT_2& target,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_aim_at(m,pos,target,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+/** See vector_ortho.h for details */
+template < typename E, class A, class O, class C,
+ class VecT_1, class VecT_2, class VecT_3 > void
+quaternion_rotation_aim_at_axial(
+ quaternion<E,A,O,C>& q,
+ const VecT_1& pos,
+ const VecT_2& target,
+ const VecT_3& axis,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef matrix< E,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_aim_at_axial(m,pos,target,axis,order);
+ quaternion_rotation_matrix(q,m);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Relative rotation about world axes
+//////////////////////////////////////////////////////////////////////////////
+
+/* Rotate a quaternion about the given world axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_world_axis(quaternion<E,A,O,C>& q,size_t axis,E angle)
+{
+ typedef quaternion<E,A,O,C> quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+
+ /* Checking */
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ const size_t W = order_type::W;
+ const size_t I = order_type::X + i;
+ const size_t J = order_type::X + j;
+ const size_t K = order_type::X + k;
+
+ angle *= value_type(.5);
+ value_type s = value_type(std::sin(angle));
+ value_type c = value_type(std::cos(angle));
+
+ quaternion_type result;
+ result[I] = c * q[I] + s * q[W];
+ result[J] = c * q[J] - s * q[K];
+ result[K] = c * q[K] + s * q[J];
+ result[W] = c * q[W] - s * q[I];
+ q = result;
+}
+
+/* Rotate a quaternion about the world x axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_world_x(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotate_about_world_axis(q,0,angle);
+}
+
+/* Rotate a quaternion about the world y axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_world_y(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotate_about_world_axis(q,1,angle);
+}
+
+/* Rotate a quaternion about the world z axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_world_z(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotate_about_world_axis(q,2,angle);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Relative rotation about local axes
+//////////////////////////////////////////////////////////////////////////////
+
+/* Rotate a quaternion about the given local axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_local_axis(quaternion<E,A,O,C>& q,size_t axis,E angle)
+{
+ typedef quaternion<E,A,O,C> quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+
+ /* Checking */
+ detail::CheckIndex3(axis);
+
+ size_t i, j, k;
+ cyclic_permutation(axis, i, j, k);
+
+ const size_t W = order_type::W;
+ const size_t I = order_type::X + i;
+ const size_t J = order_type::X + j;
+ const size_t K = order_type::X + k;
+
+ angle *= value_type(.5);
+ value_type s = value_type(std::sin(angle));
+ value_type c = value_type(std::cos(angle));
+
+ quaternion_type result;
+ result[I] = c * q[I] + s * q[W];
+ result[J] = c * q[J] + s * q[K];
+ result[K] = c * q[K] - s * q[J];
+ result[W] = c * q[W] - s * q[I];
+ q = result;
+}
+
+/* Rotate a quaternion about its local x axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_local_x(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotate_about_local_axis(q,0,angle);
+}
+
+/* Rotate a quaternion about its local y axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_local_y(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotate_about_local_axis(q,1,angle);
+}
+
+/* Rotate a quaternion about its local z axis */
+template < class E, class A, class O, class C > void
+quaternion_rotate_about_local_z(quaternion<E,A,O,C>& q, E angle) {
+ quaternion_rotate_about_local_axis(q,2,angle);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Rotation from vector to vector
+//////////////////////////////////////////////////////////////////////////////
+
+/* http://www.martinb.com/maths/algebra/vectors/angleBetween/index.htm. */
+
+/** Build a quaternion to rotate from one vector to another */
+template < class E,class A,class O,class C,class VecT_1,class VecT_2 > void
+quaternion_rotation_vec_to_vec(
+ quaternion<E,A,O,C>& q,
+ const VecT_1& v1,
+ const VecT_2& v2,
+ bool unit_length_vectors = false)
+{
+ typedef quaternion<E,A,O,C> quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef vector< value_type, fixed<3> > vector_type;
+
+ /* Checking handled by cross() */
+
+ /* @todo: If at some point quaternion<> has a set() function that takes a
+ * vector and a scalar, this can then be written as:
+ *
+ * if (...) {
+ * q.set(value_type(1)+dot(v1,v2), cross(v1,v2));
+ * } else {
+ * q.set(std::sqrt(...)+dot(v1,v2), cross(v1,v2));
+ * }
+ */
+
+ vector_type c = cross(v1,v2);
+ if (unit_length_vectors) {
+ q = quaternion_type(value_type(1) + dot(v1,v2), c.data());
+ } else {
+ q = quaternion_type(
+ std::sqrt(v1.length_squared() * v2.length_squared()) + dot(v1,v2),
+ c/*.data()*/
+ );
+ }
+ q.normalize();
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Scale the angle of a rotation matrix
+//////////////////////////////////////////////////////////////////////////////
+
+template < typename E, class A, class O, class C > void
+quaternion_scale_angle(quaternion<E,A,O,C>& q, E t,
+ E tolerance = epsilon<E>::placeholder())
+{
+ typedef vector< E,fixed<3> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ vector_type axis;
+ value_type angle;
+ quaternion_to_axis_angle(q, axis, angle, tolerance);
+ quaternion_rotation_axis_angle(q, axis, angle * t);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Support functions for uniform handling of pos- and neg-cross quaternions
+//////////////////////////////////////////////////////////////////////////////
+
+namespace detail {
+
+/** Concatenate two quaternions in the order q1->q2 */
+template < class QuatT_1, class QuatT_2 >
+typename et::QuaternionPromote2<QuatT_1,QuatT_2>::temporary_type
+quaternion_rotation_difference(
+ const QuatT_1& q1, const QuatT_2& q2, positive_cross)
+{
+ return q2 * conjugate(q1);
+}
+
+/** Concatenate two quaternions in the order q1->q2 */
+template < class QuatT_1, class QuatT_2 >
+typename et::QuaternionPromote2<QuatT_1,QuatT_2>::temporary_type
+quaternion_rotation_difference(
+ const QuatT_1& q1, const QuatT_2& q2, negative_cross)
+{
+ return conjugate(q1) * q2;
+}
+
+} // namespace detail
+
+//////////////////////////////////////////////////////////////////////////////
+// Quaternions rotation difference
+//////////////////////////////////////////////////////////////////////////////
+
+/** Return the rotational 'difference' between two quaternions */
+template < class QuatT_1, class QuatT_2 >
+typename et::QuaternionPromote2<QuatT_1,QuatT_2>::temporary_type
+quaternion_rotation_difference(const QuatT_1& q1, const QuatT_2& q2) {
+ return detail::quaternion_rotation_difference(
+ q1, q2, typename QuatT_1::cross_type());
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Conversions
+//////////////////////////////////////////////////////////////////////////////
+
+/** Convert a quaternion to an axis-angle pair */
+template < class QuatT, typename E, class A > void
+quaternion_to_axis_angle(
+ const QuatT& q,
+ vector<E,A>& axis,
+ E& angle,
+ E tolerance = epsilon<E>::placeholder())
+{
+ typedef QuatT quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef typename quaternion_type::order_type order_type;
+
+ /* Checking */
+ detail::CheckQuat(q);
+
+ axis = q.imaginary();
+ value_type l = length(axis);
+ if (l > tolerance) {
+ axis /= l;
+ angle = value_type(2) * std::atan2(l,q.real());
+ } else {
+ axis.zero();
+ angle = value_type(0);
+ }
+}
+
+/** Convert a quaternion to an Euler-angle triple
+ *
+ * Note: I've implemented direct quaternion-to-Euler conversion, but as far as
+ * I can tell it more or less reduces to converting the quaternion to a matrix
+ * as you go. The direct method is a little more efficient in that it doesn't
+ * require a temporary and only the necessary matrix elements need be
+ * computed. However, the implementation is complex and there's considerable
+ * opportunity for error, so from a development and debugging standpoint I
+ * think it's better to just perform the conversion via matrix_to_euler(),
+ * which is already known to be correct.
+*/
+
+template < class QuatT, typename Real > void
+quaternion_to_euler(
+ const QuatT& q,
+ Real& angle_0,
+ Real& angle_1,
+ Real& angle_2,
+ EulerOrder order,
+ Real tolerance = epsilon<Real>::placeholder())
+{
+ typedef QuatT quaternion_type;
+ typedef typename quaternion_type::value_type value_type;
+ typedef matrix< value_type,fixed<3,3>,row_basis,row_major > matrix_type;
+
+ matrix_type m;
+ matrix_rotation_quaternion(m, q);
+ matrix_to_euler(m, angle_0, angle_1, angle_2, order, tolerance);
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef typedef_h
+#define typedef_h
+
+#include <cml/vector.h>
+#include <cml/matrix.h>
+#include <cml/quaternion.h>
+#include <cml/constants.h>
+#include <cml/mathlib/epsilon.h>
+
+namespace cml {
+
+/* fixed-size vectors */
+typedef vector< int, fixed<2> > vector2i;
+typedef vector< float, fixed<2> > vector2f;
+typedef vector< double, fixed<2> > vector2d;
+
+typedef vector< int, fixed<3> > vector3i;
+typedef vector< float, fixed<3> > vector3f;
+typedef vector< double, fixed<3> > vector3d;
+
+typedef vector< int, fixed<4> > vector4i;
+typedef vector< float, fixed<4> > vector4f;
+typedef vector< double, fixed<4> > vector4d;
+
+/* fixed-size matrices */
+typedef matrix< int, fixed<2,2>, row_basis, row_major > matrix22i_r;
+typedef matrix< int, fixed<2,2>, col_basis, col_major > matrix22i_c;
+typedef matrix< float, fixed<2,2>, row_basis, row_major > matrix22f_r;
+typedef matrix< float, fixed<2,2>, col_basis, col_major > matrix22f_c;
+typedef matrix< double, fixed<2,2>, row_basis, row_major > matrix22d_r;
+typedef matrix< double, fixed<2,2>, col_basis, col_major > matrix22d_c;
+
+typedef matrix< int, fixed<3,3>, row_basis, row_major > matrix33i_r;
+typedef matrix< int, fixed<3,3>, col_basis, col_major > matrix33i_c;
+typedef matrix< float, fixed<3,3>, row_basis, row_major > matrix33f_r;
+typedef matrix< float, fixed<3,3>, col_basis, col_major > matrix33f_c;
+typedef matrix< double, fixed<3,3>, row_basis, row_major > matrix33d_r;
+typedef matrix< double, fixed<3,3>, col_basis, col_major > matrix33d_c;
+
+typedef matrix< int, fixed<4,4>, row_basis, row_major > matrix44i_r;
+typedef matrix< int, fixed<4,4>, col_basis, col_major > matrix44i_c;
+typedef matrix< float, fixed<4,4>, row_basis, row_major > matrix44f_r;
+typedef matrix< float, fixed<4,4>, col_basis, col_major > matrix44f_c;
+typedef matrix< double, fixed<4,4>, row_basis, row_major > matrix44d_r;
+typedef matrix< double, fixed<4,4>, col_basis, col_major > matrix44d_c;
+
+typedef matrix< int, fixed<3,2>, row_basis, row_major > matrix32i_r;
+typedef matrix< float, fixed<3,2>, row_basis, row_major > matrix32f_r;
+typedef matrix< double, fixed<3,2>, row_basis, row_major > matrix32d_r;
+
+typedef matrix< int, fixed<2,3>, col_basis, col_major > matrix23i_c;
+typedef matrix< float, fixed<2,3>, col_basis, col_major > matrix23f_c;
+typedef matrix< double, fixed<2,3>, col_basis, col_major > matrix23d_c;
+
+typedef matrix< int, fixed<4,3>, row_basis, row_major > matrix43i_r;
+typedef matrix< float, fixed<4,3>, row_basis, row_major > matrix43f_r;
+typedef matrix< double, fixed<4,3>, row_basis, row_major > matrix43d_r;
+
+typedef matrix< int, fixed<3,4>, col_basis, col_major > matrix34i_c;
+typedef matrix< float, fixed<3,4>, col_basis, col_major > matrix34f_c;
+typedef matrix< double, fixed<3,4>, col_basis, col_major > matrix34d_c;
+
+/* quaternions */
+typedef quaternion<float, fixed<>,vector_first,negative_cross>
+ quaternionf_n;
+typedef quaternion<float, fixed<>,vector_first,positive_cross>
+ quaternionf_p;
+typedef quaternion<double,fixed<>,vector_first,negative_cross>
+ quaterniond_n;
+typedef quaternion<double,fixed<>,vector_first,positive_cross>
+ quaterniond_p;
+
+/* dynamically resizable vectors */
+typedef vector< int, dynamic<> > vectori;
+typedef vector< float, dynamic<> > vectorf;
+typedef vector< double, dynamic<> > vectord;
+
+/* dynamically resizable matrices */
+typedef matrix< int, dynamic<>, row_basis, row_major > matrixi_r;
+typedef matrix< int, dynamic<>, col_basis, col_major > matrixi_c;
+typedef matrix< float, dynamic<>, row_basis, row_major > matrixf_r;
+typedef matrix< float, dynamic<>, col_basis, col_major > matrixf_c;
+typedef matrix< double, dynamic<>, row_basis, row_major > matrixd_r;
+typedef matrix< double, dynamic<>, col_basis, col_major > matrixd_c;
+
+/* constants */
+typedef constants<float> constantsf;
+typedef constants<double> constantsd;
+
+/* epsilon/tolerance values (placeholder) */
+typedef epsilon<float> epsilonf;
+typedef epsilon<double> epsilond;
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_angle_h
+#define vector_angle_h
+
+#include <cml/mathlib/checking.h>
+
+/* Functions for finding the signed and unsigned angles between vectors in
+ * 3D and 2D.
+ *
+ * Note that the input vectors for these functions are not required to be
+ * unit length.
+ *
+ * @todo: Clean up promotions, conversions, and return types.
+ */
+
+namespace cml {
+
+/** Signed angle between two 3D vectors. */
+template< class VecT_1, class VecT_2, class VecT_3 >
+typename detail::DotPromote<
+ typename detail::CrossPromote<VecT_1,VecT_2>::promoted_vector, VecT_3
+>::promoted_scalar
+signed_angle(const VecT_1& v1, const VecT_2& v2, const VecT_3& reference)
+{
+ typedef typename detail::CrossPromote<VecT_1,VecT_2>::promoted_vector
+ vector_type;
+ typedef typename detail::DotPromote<vector_type,VecT_3>::promoted_scalar
+ value_type;
+
+ vector_type c = cross(v1,v2);
+ value_type angle = std::atan2(double(length(c)),double(dot(v1,v2)));
+ return dot(c,reference) < value_type(0) ? -angle : angle;
+}
+
+/** Unsigned angle between two 3D vectors. */
+template< class VecT_1, class VecT_2 >
+typename detail::DotPromote< VecT_1, VecT_2 >::promoted_scalar
+unsigned_angle(const VecT_1& v1, const VecT_2& v2) {
+ return std::atan2(double(length(cross(v1,v2))),double(dot(v1,v2)));
+}
+
+/** Signed angle between two 2D vectors. */
+template< class VecT_1, class VecT_2 >
+typename detail::DotPromote< VecT_1, VecT_2 >::promoted_scalar
+signed_angle_2D(const VecT_1& v1, const VecT_2& v2) {
+ return std::atan2(double(perp_dot(v1,v2)),double(dot(v1,v2)));
+}
+
+/** Unsigned angle between two 2D vectors. */
+template< class VecT_1, class VecT_2 >
+typename detail::DotPromote< VecT_1, VecT_2 >::promoted_scalar
+unsigned_angle_2D(const VecT_1& v1, const VecT_2& v2) {
+ return std::fabs(signed_angle_2D(v1,v2));
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_misc_h
+#define vector_misc_h
+
+#include <cml/mathlib/coord_conversion.h>
+
+/* Miscellaneous vector functions. */
+
+namespace cml {
+
+/* Function to project a vector v onto a hyperplane specified by a unit-length
+ * normal n.
+ *
+ * @todo: Clean up promotion code.
+ */
+
+template < class VecT_1, class VecT_2 >
+typename detail::CrossPromote<VecT_1,VecT_2>::promoted_vector
+project_to_hplane(const VecT_1& v, const VecT_2& n)
+{
+ typedef typename detail::CrossPromote<VecT_1,VecT_2>::promoted_vector
+ result_type;
+
+ result_type result;
+ et::detail::Resize(result, v.size());
+
+ result = v - dot(v,n) * n;
+ return result;
+}
+
+/* Return a vector perpendicular (CCW) to a 2D vector. */
+template < class VecT > vector< typename VecT::value_type, fixed<2> >
+perp(const VecT& v)
+{
+ typedef vector< typename VecT::value_type, fixed<2> > temporary_type;
+
+ /* Checking */
+ detail::CheckVec2(v);
+
+ return temporary_type(-v[1],v[0]);
+}
+
+/* @todo: unit_cross() and cross_cardinal() should probably go in
+ * vector_products.h, but I'm trying to avoid modifying the existing codebase
+ * for now.
+ */
+
+/** Return normalized cross product of two vectors */
+template< class LeftT, class RightT >
+typename detail::CrossPromote<LeftT,RightT>::promoted_vector
+unit_cross(const LeftT& left, const RightT& right) {
+ /* @todo: This will probably break with dynamic<> vectors */
+ return normalize(cross(left,right));
+}
+
+/** Return the cross product of v and the i'th cardinal basis vector */
+template < class VecT > vector< typename VecT::value_type, fixed<3> >
+cross_cardinal(const VecT& v, size_t i)
+{
+ typedef vector< typename VecT::value_type, fixed<3> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec3(v);
+ detail::CheckIndex3(i);
+
+ size_t j, k;
+ cyclic_permutation(i, i, j, k);
+ vector_type result;
+ result[i] = value_type(0);
+ result[j] = v[k];
+ result[k] = -v[j];
+ return result;
+}
+
+/** Return the cross product of the i'th cardinal basis vector and v */
+template < class VecT > vector< typename VecT::value_type, fixed<3> >
+cross_cardinal(size_t i, const VecT& v)
+{
+ typedef vector< typename VecT::value_type, fixed<3> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec3(v);
+ detail::CheckIndex3(i);
+
+ size_t j, k;
+ cyclic_permutation(i, i, j, k);
+ vector_type result;
+ result[i] = value_type(0);
+ result[j] = -v[k];
+ result[k] = v[j];
+ return result;
+}
+
+/** Rotate a 3D vector v about a unit-length vector n. */
+template< class VecT_1, class VecT_2, typename Real >
+vector<
+ typename et::ScalarPromote<
+ typename VecT_1::value_type,
+ typename VecT_2::value_type
+ >::type,
+ fixed<3>
+>
+rotate_vector(const VecT_1& v, const VecT_2& n, Real angle)
+{
+ typedef vector<
+ typename et::ScalarPromote<
+ typename VecT_1::value_type,
+ typename VecT_2::value_type
+ >::type,
+ fixed<3>
+ > result_type;
+
+ /* Checking */
+ detail::CheckVec3(v);
+ detail::CheckVec3(n);
+
+ result_type parallel = dot(v,n)*n;
+ return (
+ std::cos(angle)*(v-parallel) + std::sin(angle)*cross(n,v) + parallel
+ );
+}
+
+/** Rotate a 2D vector v about a unit-length vector n. */
+template< class VecT, typename Real >
+vector< typename VecT::value_type, fixed<2> >
+rotate_vector_2D(const VecT& v, Real angle)
+{
+ typedef vector< typename VecT::value_type, fixed<2> > result_type;
+ typedef typename result_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec2(v);
+
+ value_type s = std::sin(angle);
+ value_type c = std::cos(angle);
+
+ return result_type(c * v[0] - s * v[1], s * v[0] + c * v[1]);
+}
+
+/** Random unit 3D or 2D vector
+ *
+ * @todo: This is just placeholder code for what will be a more thorough
+ * 'random unit' implementation:
+ *
+ * - All dimensions will be handled uniformly if practical, perhaps through
+ * a normal distrubution PRNG.
+ *
+ * - Failing that (or perhaps even in this case), dimensions 2 and 3 will be
+ * dispatched to special-case code, most likely implementing the algorithms
+ * below.
+ *
+ * - Like the utility random functions, the option of using one's own PRGN
+ * will be made available.
+ *
+ * @todo: Once N-d random vectors are supported, add a 'random unit
+ * quaternion' function that wraps a call to random_unit() with a 4D vector as
+ * the argument.
+ */
+template < typename E, class A > void
+random_unit(vector<E,A>& v)
+{
+ typedef vector<E,A> vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ switch (v.size()) {
+ case 3:
+ {
+ vector< E, fixed<3> > temp;
+ spherical_to_cartesian(
+ value_type(1),
+ value_type(random_unit() * constants<value_type>::two_pi()),
+ acos_safe(random_real(value_type(-1),value_type(1))),
+ 2,
+ colatitude,
+ temp
+ );
+ v[0] = temp[0];
+ v[1] = temp[1];
+ v[2] = temp[2];
+ break;
+ }
+ case 2:
+ {
+ vector< E, fixed<2> > temp;
+ polar_to_cartesian(
+ value_type(1),
+ value_type(random_unit() * constants<value_type>::two_pi()),
+ temp
+ );
+ v[0] = temp[0];
+ v[1] = temp[1];
+ break;
+ }
+ default:
+ throw std::invalid_argument(
+ "random_unit() for N-d vectors not implemented yet");
+ break;
+ }
+}
+
+/* Random vector within a given angle of a unit-length axis, i.e. in a cone
+ * (3D) or wedge (2D).
+ *
+ * The same notes the appear above apply here too, more or less. One
+ * difference is that this is really only useful in 2D and 3D (presumably), so
+ * we'll probably just do a compile- or run-time dispatch as appropriate.
+ *
+ * Also, there may be a better algorithm for generating a random unit vector
+ * in a cone; need to look into that.
+ *
+ * All of this 'temp' stuff is because there's no compile-time dispatch for
+ * 3D and 2D vectors, but that'll be fixed soon.
+ */
+
+template < typename E, class A, class VecT > void
+random_unit(vector<E,A>& v, const VecT& axis, E theta)
+{
+ typedef vector<E,A> vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ switch (v.size()) {
+ case 3:
+ {
+ vector< E, fixed<3> > temp, n, temp_axis;
+ temp_axis[0] = axis[0];
+ temp_axis[1] = axis[1];
+ temp_axis[2] = axis[2];
+
+ /* @todo: Function for finding 'any perpendicular vector'? */
+ n = axis_3D(cml::index_of_min_abs(axis[0],axis[1],axis[2]));
+ n = cross(n,temp_axis);
+
+ /* Rotate v 'away from' the axis by a random angle in the range
+ * [-theta,theta]
+ */
+ temp = rotate_vector(temp_axis,n,random_real(-theta,theta));
+
+ /* Rotate v about the axis by a random angle in the range [-pi,pi]
+ */
+ temp = rotate_vector(
+ temp,
+ temp_axis,
+ random_real(
+ -constants<value_type>::pi(),
+ constants<value_type>::pi()
+ )
+ );
+
+ v[0] = temp[0];
+ v[1] = temp[1];
+ v[2] = temp[2];
+ break;
+ }
+ case 2:
+ {
+ vector< E, fixed<2> > temp, temp_axis;
+ temp_axis[0] = axis[0];
+ temp_axis[1] = axis[1];
+ temp = rotate_vector_2D(temp_axis, random_real(-theta,theta));
+ v[0] = temp[0];
+ v[1] = temp[1];
+ break;
+ }
+ default:
+ throw std::invalid_argument(
+ "random_unit(v,axis,theta) only implemented for 2D and 3D");
+ break;
+ }
+}
+
+/* NEW: Manhattan distance */
+
+template< class VecT_1, class VecT_2 >
+typename detail::DotPromote< VecT_1, VecT_2 >::promoted_scalar
+manhattan_distance(const VecT_1& v1, const VecT_2& v2) {
+ /* Check that a promotion exists */
+ typedef typename et::VectorPromote<
+ VecT_1,VecT_2>::temporary_type promoted_vector;
+
+ typedef typename detail::DotPromote< VecT_1, VecT_2 >::promoted_scalar scalar_type;
+
+ scalar_type sum = scalar_type(0);
+ for (size_t i = 0; i < v1.size(); ++i) {
+ sum += std::fabs(v2[i]-v1[i]);
+ }
+ return sum;
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_ortho_h
+#define vector_ortho_h
+
+#include <cml/mathlib/vector_misc.h>
+#include <cml/mathlib/misc.h>
+
+/* Functions for orthonormalizing a set of basis vector in 3D or 2D, and for
+ * constructing an orthonormal basis given various input parameters.
+ */
+
+namespace cml {
+
+/* Orthonormalize 3 basis vectors in R3.
+ *
+ * Called with the default values, this function performs a single Gram-
+ * Schmidt step to orthonormalize the input vectors. By default, the direction
+ * of the 3rd basis vector is unchanged by this operation, but the unaffected
+ * axis can be specified via the 'stable_axis' parameter.
+ *
+ * The arguments 'num_iter' and 's' can be specified to an iterative Gram-
+ * Schmidt step. 'num_iter' is the number of iterations applied, and 's' is
+ * the fraction applied towards orthonormality each step.
+ *
+ * In most cases, the default arguments can be ignored, leaving only the three
+ * input vectors.
+ */
+
+//////////////////////////////////////////////////////////////////////////////
+// Orthonormalization in 3D and 2D
+//////////////////////////////////////////////////////////////////////////////
+
+template < typename E, class A > void
+orthonormalize(vector<E,A>& v0, vector<E,A>& v1, vector<E,A>& v2,
+ size_t stable_axis = 2, size_t num_iter = 0, E s = E(1))
+{
+ /* Checking */
+ detail::CheckVec3(v0);
+ detail::CheckVec3(v1);
+ detail::CheckVec3(v2);
+ detail::CheckIndex3(stable_axis);
+
+ typedef vector< E, fixed<3> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Iterative Gram-Schmidt; this step is skipped by default. */
+
+ for (size_t i = 0; i < num_iter; ++i) {
+ value_type dot01 = dot(v0,v1);
+ value_type dot12 = dot(v1,v2);
+ value_type dot20 = dot(v2,v0);
+ value_type inv_dot00 = value_type(1) / dot(v0,v0);
+ value_type inv_dot11 = value_type(1) / dot(v1,v1);
+ value_type inv_dot22 = value_type(1) / dot(v2,v2);
+
+ vector_type temp0 = v0 - s*dot01*inv_dot11*v1 - s*dot20*inv_dot22*v2;
+ vector_type temp1 = v1 - s*dot12*inv_dot22*v2 - s*dot01*inv_dot00*v0;
+ vector_type temp2 = v2 - s*dot20*inv_dot00*v0 - s*dot12*inv_dot11*v1;
+
+ v0 = temp0;
+ v1 = temp1;
+ v2 = temp2;
+ }
+
+ /* Final Gram-Schmidt step to ensure orthonormality. If no iterations
+ * have been requested (num_iter = 0), this is the only step. The step
+ * is performed such that the direction of the axis indexed by
+ * 'stable_axis' is unchanged.
+ */
+
+ size_t i, j, k;
+ cyclic_permutation(stable_axis, i, j, k);
+ vector_type v[] = { v0, v1, v2 };
+
+ v[i].normalize();
+ v[j] = normalize(project_to_hplane(v[j],v[i]));
+ v[k] = normalize(project_to_hplane(project_to_hplane(v[k],v[i]),v[j]));
+
+ v0 = v[0];
+ v1 = v[1];
+ v2 = v[2];
+}
+
+/* Orthonormalize 2 basis vectors in R2 */
+template < typename E, class A > void
+orthonormalize(vector<E,A>& v0, vector<E,A>& v1,
+ size_t stable_axis = 0, size_t num_iter = 0, E s = E(1))
+{
+ typedef vector< E, fixed<2> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Checking */
+ detail::CheckVec2(v0);
+ detail::CheckVec2(v1);
+ detail::CheckIndex2(stable_axis);
+
+ /* Iterative Gram-Schmidt; this step is skipped by default. */
+
+ for (size_t i = 0; i < num_iter; ++i) {
+ value_type dot01 = dot(v0,v1);
+
+ vector_type temp0 = v0 - (s * dot01 * v1) / dot(v1,v1);
+ vector_type temp1 = v1 - (s * dot01 * v0) / dot(v0,v0);
+
+ v0 = temp0;
+ v1 = temp1;
+ }
+
+ /* Final Gram-Schmidt step to ensure orthonormality. If no iterations
+ * have been requested (num_iter = 0), this is the only step. The step
+ * is performed such that the direction of the axis indexed by
+ * 'stable_axis' is unchanged.
+ */
+
+ size_t i, j;
+ cyclic_permutation(stable_axis, i, j);
+ vector_type v[] = { v0, v1 };
+
+ v[i].normalize();
+ v[j] = normalize(project_to_hplane(v[j],v[i]));
+
+ v0 = v[0];
+ v1 = v[1];
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Orthonormal basis construction in 3D and 2D
+//////////////////////////////////////////////////////////////////////////////
+
+/* This version of orthonormal_basis() ultimately does the work for all
+ * orthonormal_basis_*() functions. Given input vectors 'align' and
+ * 'reference', and an order 'axis_order_<i><j><k>', it constructs an
+ * orthonormal basis such that the i'th basis vector is aligned with (parallel
+ * to and pointing in the same direction as) 'align', and the j'th basis
+ * vector is maximally aligned with 'reference'. The k'th basis vector is
+ * chosen such that the basis has a determinant of +1.
+ *
+ * Note that the algorithm fails when 'align' is nearly parallel to
+ * 'reference'; this should be checked for and handled externally if it's a
+ * case that may occur.
+ */
+
+/* Note: This is an example of the 'non-const argument modification
+ * invalidates expression' gotcha. If x, y or z were to be assigned to before
+ * we were 'done' with align and reference, and if one of them were the same
+ * object as align or reference, then the algorithm could fail. As is the
+ * basis vectors are assigned at the end of the function from a temporary
+ * array, so all is well.
+ */
+
+template < class VecT_1, class VecT_2, typename E, class A > void
+orthonormal_basis(
+ const VecT_1& align,
+ const VecT_2& reference,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ vector<E,A>& z,
+ bool normalize_align = true,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef vector< E,fixed<3> > vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Checking handled by cross() and assignment to fixed<3>. */
+
+ size_t i, j, k;
+ bool odd;
+ detail::unpack_axis_order(order, i, j, k, odd);
+
+ vector_type axis[3];
+
+ axis[i] = normalize_align ? normalize(align) : align;
+ axis[k] = unit_cross(axis[i],reference);
+ axis[j] = cross(axis[k],axis[i]);
+
+ if (odd) {
+ axis[k] = -axis[k];
+ }
+
+ x = axis[0];
+ y = axis[1];
+ z = axis[2];
+}
+
+/* This version of orthonormal_basis() constructs in arbitrary basis given a
+ * vector with which to align the i'th basis vector. To avoid the failure
+ * case, the reference vector is always chosen so as to not be parallel to
+ * 'align'. This means the algorithm will always generate a valid basis, which
+ * can be useful in some circumstances; however, it should be noted that the
+ * basis will likely 'pop' as the alignment vector changes, and so may not be
+ * suitable for billboarding or other similar applications.
+ */
+
+template < class VecT, typename E, class A >
+void orthonormal_basis(
+ const VecT& align,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ vector<E,A>& z,
+ bool normalize_align = true,
+ AxisOrder order = axis_order_zyx)
+{
+ /* Checking (won't be necessary with index_of_min_abs() member function */
+ detail::CheckVec3(align);
+
+ /* @todo: vector member function index_of_min_abs() would clean this up */
+
+ orthonormal_basis(
+ align,
+ axis_3D(cml::index_of_min_abs(align[0],align[1],align[2])),
+ x, y, z, normalize_align, order
+ );
+}
+
+/* orthonormal_basis_axial() generates a basis in which the j'th basis vector
+ * is aligned with 'axis' and the i'th basis vector is maximally aligned (as
+ * 'aligned as possible') with 'align'. This can be used for e.g. axial
+ * billboarding for, say, trees or beam effects.
+ *
+ * Note that the implementation simply passes off to the 'reference' version
+ * of orthonormal_basis(), with the parameters adjusted so that the alignment
+ * is axial.
+ *
+ * With this algorithm the failure case is when 'align' and 'axis' are nearly
+ * parallel; if this is likely, it should be checked for and handled
+ * externally.
+ */
+
+template < class VecT_1, class VecT_2, typename E, class A >
+void orthonormal_basis_axial(
+ const VecT_1& align,
+ const VecT_2& axis,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ vector<E,A>& z,
+ bool normalize_align = true,
+ AxisOrder order = axis_order_zyx)
+{
+ orthonormal_basis(
+ axis,
+ align,
+ x,
+ y,
+ z,
+ normalize_align,
+ detail::swap_axis_order(order));
+}
+
+/* orthonormal_basis_viewplane() builds a basis aligned with a viewplane, as
+ * extracted from the input view matrix. The function takes into account the
+ * handedness of the input view matrix and orients the basis accordingly.
+ *
+ * The generated basis will always be valid.
+ */
+template < class MatT, typename E, class A >
+void orthonormal_basis_viewplane(
+ const MatT& view_matrix,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ vector<E,A>& z,
+ Handedness handedness,
+ AxisOrder order = axis_order_zyx)
+{
+ typedef MatT matrix_type;
+ typedef typename matrix_type::value_type value_type;
+
+ orthonormal_basis(
+ -(handedness == left_handed ? value_type(1) : value_type(-1)) *
+ matrix_get_transposed_z_basis_vector(view_matrix),
+ matrix_get_transposed_y_basis_vector(view_matrix),
+ x, y, z, false, order
+ );
+}
+
+/** Build a viewplane-oriented basis from a left-handedness view matrix. */
+template < class MatT, typename E, class A >
+void orthonormal_basis_viewplane_LH(
+ const MatT& view_matrix,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ vector<E,A>& z,
+ AxisOrder order = axis_order_zyx)
+{
+ orthonormal_basis_viewplane(
+ view_matrix,x,y,z,left_handed,order);
+}
+
+/** Build a viewplane-oriented basis from a right-handedness view matrix. */
+template < class MatT, typename E, class A >
+void orthonormal_basis_viewplane_RH(
+ const MatT& view_matrix,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ vector<E,A>& z,
+ AxisOrder order = axis_order_zyx)
+{
+ orthonormal_basis_viewplane(
+ view_matrix,x,y,z,right_handed,order);
+}
+
+/* Build a 2D orthonormal basis. */
+template < class VecT, typename E, class A >
+void orthonormal_basis_2D(
+ const VecT& align,
+ vector<E,A>& x,
+ vector<E,A>& y,
+ bool normalize_align = true,
+ AxisOrder2D order = axis_order_xy)
+{
+ typedef vector< E,fixed<2> > vector_type;
+
+ /* Checking handled by perp() and assignment to fixed<2>. */
+
+ size_t i, j;
+ bool odd;
+ detail::unpack_axis_order_2D(order, i, j, odd);
+
+ vector_type axis[2];
+
+ axis[i] = normalize_align ? normalize(align) : align;
+ axis[j] = perp(axis[i]);
+
+ if (odd) {
+ axis[j] = -axis[j];
+ }
+
+ x = axis[0];
+ y = axis[1];
+}
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_transform_h
+#define vector_transform_h
+
+#include <cml/mathlib/checking.h>
+
+/* Functions for transforming a vector, representing a geometric point or
+ * or vector, by an affine transfom.
+ *
+ * Note: This functionality may be provisional, depending on what architecture
+ * we settle on for the higher-level math functions. If we do keep these
+ * functions, then this code may ending up being a placeholder for expression
+ * template code.
+ */
+
+namespace cml {
+
+/** A fixed-size temporary 4D vector */
+#define TEMP_VEC4 vector< \
+ typename et::ScalarPromote< \
+ typename MatT::value_type, \
+ typename VecT::value_type \
+ >::type, \
+ fixed<4> \
+>
+
+/** A fixed-size temporary 3D vector */
+#define TEMP_VEC3 vector< \
+ typename et::ScalarPromote< \
+ typename MatT::value_type, \
+ typename VecT::value_type \
+ >::type, \
+ fixed<3> \
+>
+
+/** A fixed-size temporary 2D vector */
+#define TEMP_VEC2 vector< \
+ typename et::ScalarPromote< \
+ typename MatT::value_type, \
+ typename VecT::value_type \
+ >::type, \
+ fixed<2> \
+>
+
+namespace detail {
+
+template < class MatT, class VecT > TEMP_VEC4
+transform_vector_4D(const MatT& m, const VecT& v, row_basis) {
+ return v*m;
+}
+
+template < class MatT, class VecT > TEMP_VEC4
+transform_vector_4D(const MatT& m, const VecT& v, col_basis) {
+ return m*v;
+}
+
+} // namespace detail
+
+/** Apply a 4x4 homogeneous transform matrix to a 4D vector */
+template < class MatT, class VecT > TEMP_VEC4
+transform_vector_4D(const MatT& m, const VecT& v) {
+ return detail::transform_vector_4D(m,v,typename MatT::basis_orient());
+}
+
+/** Apply a 3D affine transform to a 3D point */
+template < class MatT, class VecT > TEMP_VEC3
+transform_point(const MatT& m, const VecT& v)
+{
+ typedef TEMP_VEC3 vector_type;
+
+ /* Checking */
+ detail::CheckMatAffine3D(m);
+ detail::CheckVec3(v);
+
+ return vector_type(
+ m.basis_element(0,0)*v[0]+m.basis_element(1,0)*v[1]+
+ m.basis_element(2,0)*v[2]+m.basis_element(3,0),
+ m.basis_element(0,1)*v[0]+m.basis_element(1,1)*v[1]+
+ m.basis_element(2,1)*v[2]+m.basis_element(3,1),
+ m.basis_element(0,2)*v[0]+m.basis_element(1,2)*v[1]+
+ m.basis_element(2,2)*v[2]+m.basis_element(3,2)
+ );
+}
+
+/** Apply a 3D affine transform to a 3D vector */
+template < class MatT, class VecT > TEMP_VEC3
+transform_vector(const MatT& m, const VecT& v)
+{
+ typedef TEMP_VEC3 vector_type;
+
+ /* Checking */
+ detail::CheckMatLinear3D(m);
+ detail::CheckVec3(v);
+
+ return vector_type(
+ m.basis_element(0,0)*v[0]+m.basis_element(1,0)*v[1]+
+ m.basis_element(2,0)*v[2],
+ m.basis_element(0,1)*v[0]+m.basis_element(1,1)*v[1]+
+ m.basis_element(2,1)*v[2],
+ m.basis_element(0,2)*v[0]+m.basis_element(1,2)*v[1]+
+ m.basis_element(2,2)*v[2]
+ );
+}
+
+/** Apply a 2D affine transform to a 2D point */
+template < class MatT, class VecT > TEMP_VEC2
+transform_point_2D(const MatT& m, const VecT& v)
+{
+ typedef TEMP_VEC2 vector_type;
+
+ /* Checking */
+ detail::CheckMatAffine2D(m);
+ detail::CheckVec2(v);
+
+ return vector_type(
+ m.basis_element(0,0)*v[0]+m.basis_element(1,0)*v[1]+
+ m.basis_element(2,0),
+ m.basis_element(0,1)*v[0]+m.basis_element(1,1)*v[1]+
+ m.basis_element(2,1)
+ );
+}
+
+/** Apply a 2D affine transform to a 2D vector */
+template < class MatT, class VecT > TEMP_VEC2
+transform_vector_2D(const MatT& m, const VecT& v)
+{
+ typedef TEMP_VEC2 vector_type;
+
+ /* Checking */
+ detail::CheckMatLinear2D(m);
+ detail::CheckVec2(v);
+
+ return vector_type(
+ m.basis_element(0,0)*v[0] + m.basis_element(1,0)*v[1],
+ m.basis_element(0,1)*v[0] + m.basis_element(1,1)*v[1]
+ );
+}
+
+#undef TEMP_VEC4
+#undef TEMP_VEC3
+#undef TEMP_VEC2
+
+} // namespace cml
+
+#endif
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * The configurable matrix<> class.
+ */
+
+#ifndef cml_matrix_h
+#define cml_matrix_h
+
+#include <cml/core/common.h>
+
+namespace cml {
+
+/** A configurable matrix.
+ *
+ * This class encapsulates the notion of a matrix. The ArrayType template
+ * argument can be used to select the type of array to be used as internal
+ * storage for a 2D array of type Element.
+ *
+ * @internal Unlike the previous version, this uses specializations to better
+ * enable varied array and matrix types. For example, with the rebind method,
+ * it's difficult to support external<> matrix types that should not be
+ * assigned to.
+ *
+ * @internal All assignments to the matrix should go through UnrollAssignment,
+ * which ensures that the source expression and the destination matrix have
+ * the same size. This is particularly important for dynamically-sized
+ * matrices.
+ */
+template<typename Element, class ArrayType,
+ typename BasisOrient = CML_DEFAULT_BASIS_ORIENTATION,
+ typename Layout = CML_DEFAULT_ARRAY_LAYOUT> class matrix;
+
+} // namespace cml
+
+#include <cml/matrix/matrix_ops.h>
+#include <cml/matrix/matrix_transpose.h>
+#include <cml/matrix/matrix_rowcol.h>
+#include <cml/matrix/matrix_mul.h>
+#include <cml/matvec/matvec_mul.h>
+#include <cml/matrix/matrix_functions.h>
+#include <cml/matrix/lu.h>
+#include <cml/matrix/inverse.h>
+#include <cml/matrix/determinant.h>
+#include <cml/matrix/matrix_print.h>
+
+#include <cml/matrix/fixed.h>
+#include <cml/matrix/dynamic.h>
+#include <cml/matrix/external.h>
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * @note GCC4 requires a copy constructor to elide---it won't elide a
+ * compiler-generated copy constructor!
+ */
+
+#ifndef matrix_class_ops_h
+#define matrix_class_ops_h
+
+#if defined(_MSC_VER) && _MSC_VER < 1400
+#pragma warning(disable:4003)
+// XXX Horrible hack to turn off warnings about "not enough actual params"
+// for the macros below.
+#endif
+
+/* This is to circumvent the problem of commas in a macro argument. It's
+ * used to instantiate CML_ACCUMULATED_MATRIX_MULT:
+ */
+#define TEMPLATED_MATRIX_MACRO matrix<E,AT,BO,L>
+
+/* XXX HACK!!! This is a hack to resize in the assign() functions only when
+ * auto resizing is turned off.
+ */
+#if !defined(CML_MATRIX_RESIZE_ON_ASSIGNMENT)
+#define _DO_MATRIX_SET_RESIZE(_R_,_C_) cml::et::detail::Resize(*this,_R_,_C_)
+#else
+#define _DO_MATRIX_SET_RESIZE(_R_,_C_)
+#endif
+
+/** Set a matrix from 2x2 values.
+ *
+ * The layout assumed for the values is that of the matrix being assigned.
+ */
+#define CML_ASSIGN_MAT_22 \
+matrix_type& \
+set( \
+ ELEMENT_ARG_TYPE e00, ELEMENT_ARG_TYPE e01, \
+ ELEMENT_ARG_TYPE e10, ELEMENT_ARG_TYPE e11 \
+ ) \
+{ \
+ _DO_MATRIX_SET_RESIZE(2,2); \
+ /* This is overkill, but simplifies size checking: */ \
+ value_type v[2][2] = {{e00,e01},{e10,e11}}; \
+ typedef et::OpAssign<Element,Element> OpT; \
+ typedef const value_type element; \
+ cml::matrix<element, external<2,2>, basis_orient, row_major> \
+ src(&v[0][0]); \
+ et::UnrollAssignment<OpT>(*this,src); \
+ return *this; \
+}
+
+/** Create a matrix from 3x3 values.
+ *
+ * The layout assumed for the values is that of the matrix being assigned.
+ */
+#define CML_ASSIGN_MAT_33 \
+matrix_type& \
+set( \
+ ELEMENT_ARG_TYPE e00, ELEMENT_ARG_TYPE e01, ELEMENT_ARG_TYPE e02, \
+ ELEMENT_ARG_TYPE e10, ELEMENT_ARG_TYPE e11, ELEMENT_ARG_TYPE e12, \
+ ELEMENT_ARG_TYPE e20, ELEMENT_ARG_TYPE e21, ELEMENT_ARG_TYPE e22 \
+ ) \
+{ \
+ _DO_MATRIX_SET_RESIZE(3,3); \
+ /* This is overkill, but simplifies size checking: */ \
+ value_type v[3][3] = { \
+ {e00,e01,e02}, \
+ {e10,e11,e12}, \
+ {e20,e21,e22} \
+ }; \
+ typedef et::OpAssign<Element,Element> OpT; \
+ typedef const value_type element; \
+ cml::matrix<element, external<3,3>, basis_orient, row_major> \
+ src(&v[0][0]); \
+ et::UnrollAssignment<OpT>(*this,src); \
+ return *this; \
+}
+
+/** Create a matrix from 4x4 values.
+ *
+ * The layout assumed for the values is that of the matrix being assigned.
+ */
+#define CML_ASSIGN_MAT_44 \
+matrix_type& \
+set( \
+ ELEMENT_ARG_TYPE e00, ELEMENT_ARG_TYPE e01, \
+ ELEMENT_ARG_TYPE e02, ELEMENT_ARG_TYPE e03, \
+ ELEMENT_ARG_TYPE e10, ELEMENT_ARG_TYPE e11, \
+ ELEMENT_ARG_TYPE e12, ELEMENT_ARG_TYPE e13, \
+ ELEMENT_ARG_TYPE e20, ELEMENT_ARG_TYPE e21, \
+ ELEMENT_ARG_TYPE e22, ELEMENT_ARG_TYPE e23, \
+ ELEMENT_ARG_TYPE e30, ELEMENT_ARG_TYPE e31, \
+ ELEMENT_ARG_TYPE e32, ELEMENT_ARG_TYPE e33 \
+ ) \
+{ \
+ _DO_MATRIX_SET_RESIZE(4,4); \
+ /* This is overkill, but simplifies size checking: */ \
+ value_type v[4][4] = { \
+ {e00,e01,e02,e03}, \
+ {e10,e11,e12,e13}, \
+ {e20,e21,e22,e23}, \
+ {e30,e31,e32,e33} \
+ }; \
+ typedef et::OpAssign<Element,Element> OpT; \
+ typedef const value_type element; \
+ cml::matrix<element, external<4,4>, basis_orient, row_major> \
+ src(&v[0][0]); \
+ et::UnrollAssignment<OpT>(*this,src); \
+ return *this; \
+}
+
+/** Create a matrix from 2x2 values.
+ *
+ * The layout assumed for the values is that of the matrix being assigned.
+ */
+#define CML_CONSTRUCT_MAT_22 \
+matrix( \
+ ELEMENT_ARG_TYPE e00, ELEMENT_ARG_TYPE e01, \
+ ELEMENT_ARG_TYPE e10, ELEMENT_ARG_TYPE e11 \
+ ) \
+{ \
+ set( \
+ e00,e01, \
+ e10,e11 \
+ ); \
+}
+
+/** Create a matrix from 3x3 values.
+ *
+ * The layout assumed for the values is that of the matrix being assigned.
+ */
+#define CML_CONSTRUCT_MAT_33 \
+matrix( \
+ ELEMENT_ARG_TYPE e00, ELEMENT_ARG_TYPE e01, ELEMENT_ARG_TYPE e02, \
+ ELEMENT_ARG_TYPE e10, ELEMENT_ARG_TYPE e11, ELEMENT_ARG_TYPE e12, \
+ ELEMENT_ARG_TYPE e20, ELEMENT_ARG_TYPE e21, ELEMENT_ARG_TYPE e22 \
+ ) \
+{ \
+ set( \
+ e00,e01,e02, \
+ e10,e11,e12, \
+ e20,e21,e22 \
+ ); \
+}
+
+/** Create a matrix from 4x4 values.
+ *
+ * The layout assumed for the values is that of the matrix being assigned.
+ */
+#define CML_CONSTRUCT_MAT_44 \
+matrix( \
+ ELEMENT_ARG_TYPE e00, ELEMENT_ARG_TYPE e01, \
+ ELEMENT_ARG_TYPE e02, ELEMENT_ARG_TYPE e03, \
+ ELEMENT_ARG_TYPE e10, ELEMENT_ARG_TYPE e11, \
+ ELEMENT_ARG_TYPE e12, ELEMENT_ARG_TYPE e13, \
+ ELEMENT_ARG_TYPE e20, ELEMENT_ARG_TYPE e21, \
+ ELEMENT_ARG_TYPE e22, ELEMENT_ARG_TYPE e23, \
+ ELEMENT_ARG_TYPE e30, ELEMENT_ARG_TYPE e31, \
+ ELEMENT_ARG_TYPE e32, ELEMENT_ARG_TYPE e33 \
+ ) \
+{ \
+ set( \
+ e00,e01,e02,e03, \
+ e10,e11,e12,e13, \
+ e20,e21,e22,e23, \
+ e30,e31,e32,e33 \
+ ); \
+}
+
+/** Copy-construct a matrix from a fixed-size array of values. */
+#define CML_MAT_COPY_FROM_FIXED_ARRAY(_R_,_C_) \
+matrix(const value_type m[_R_][_C_]) { \
+ typedef et::OpAssign<Element,Element> OpT; \
+ cml::matrix<const value_type, external<_R_,_C_>, \
+ basis_orient, row_major> src(&m[0][0]); \
+ et::UnrollAssignment<OpT>(*this,src); \
+}
+
+/** Copy-construct a matrix from a runtime-sized array of values. */
+#define CML_MAT_COPY_FROM_ARRAY(_add_) \
+matrix(const value_type* const v, size_t R, size_t C) _add_ { \
+ typedef et::OpAssign<Element,Element> OpT; \
+ cml::matrix<value_type, external<>, basis_orient, \
+ row_major > src(const_cast<value_type*>(v),R,C); \
+ et::UnrollAssignment<OpT>(*this,src); \
+}
+
+/** Copy this matrix from another using the given elementwise op.
+ *
+ * @internal This is required for GCC4, since it won't elide the default
+ * copy constructor.
+ */
+#define CML_MAT_COPY_FROM_MATTYPE \
+matrix(const matrix_type& m) : array_type() { \
+ typedef et::OpAssign <Element,Element> OpT; \
+ et::UnrollAssignment<OpT>(*this,m); \
+}
+
+/** Copy this matrix from another using the given elementwise op.
+ *
+ * This allows copies from arbitrary matrix types.
+ */
+#define CML_MAT_COPY_FROM_MAT \
+template<typename E, class AT, typename BO, typename L> \
+matrix(const TEMPLATED_MATRIX_MACRO& m) { \
+ typedef et::OpAssign <Element,E> OpT; \
+ et::UnrollAssignment<OpT>(*this,m); \
+}
+
+/** Declare a function to copy this matrix from a matrix expression. */
+#define CML_MAT_COPY_FROM_MATXPR \
+template<class XprT> \
+matrix(MATXPR_ARG_TYPE e) { \
+ /* Verify that a promotion exists at compile time: */ \
+ typedef typename et::MatrixPromote< \
+ matrix_type, typename XprT::result_type>::type result_type; \
+ typedef typename XprT::value_type src_value_type; \
+ typedef et::OpAssign <Element,src_value_type> OpT; \
+ et::UnrollAssignment<OpT>(*this,e); \
+}
+
+#if defined(CML_USE_GENERATED_MATRIX_ASSIGN_OP)
+#define CML_MAT_ASSIGN_FROM_MATTYPE
+#else
+/** Assign from the same matrix type.
+ *
+ * @param m the matrix to copy from.
+ *
+ * @note This is required for GCC4, otherwise it generates a slow
+ * assignment operator using memcpy.
+ *
+ * @note ICC9/Linux-x86 seems to prefer its own assignment operator (need
+ * to figure out why).
+ */
+#define CML_MAT_ASSIGN_FROM_MATTYPE \
+matrix_type& operator=(const matrix_type& m) { \
+ typedef et::OpAssign<Element,Element> OpT; \
+ et::UnrollAssignment<OpT>(*this,m); \
+ return *this; \
+}
+#endif
+
+
+/** Assign this matrix from another using the given elementwise op.
+ *
+ * This allows assignment from arbitrary matrix types.
+ *
+ * @param _op_ the operator (e.g. +=)
+ * @param _op_name_ the op functor (e.g. et::OpAssign)
+ */
+#define CML_MAT_ASSIGN_FROM_MAT(_op_, _op_name_) \
+template<typename E, class AT, typename BO, typename L> matrix_type& \
+operator _op_ (const TEMPLATED_MATRIX_MACRO& m) { \
+ typedef _op_name_ <Element,E> OpT; \
+ et::UnrollAssignment<OpT>(*this,m); \
+ return *this; \
+}
+
+/** Declare a function to assign this matrix from a matrix expression.
+ *
+ * @param _op_ the operator (e.g. +=)
+ * @param _op_name_ the op functor (e.g. et::OpAssign)
+ */
+#define CML_MAT_ASSIGN_FROM_MATXPR(_op_, _op_name_) \
+template<class XprT> matrix_type& \
+operator _op_ (MATXPR_ARG_TYPE e) { \
+ /* Verify that a promotion exists at compile time: */ \
+ typedef typename et::MatrixPromote< \
+ matrix_type, typename XprT::result_type>::type result_type; \
+ typedef typename XprT::value_type src_value_type; \
+ typedef _op_name_ <Element,src_value_type> OpT; \
+ et::UnrollAssignment<OpT>(*this,e); \
+ return *this; \
+}
+
+/** Declare a function to assign this matrix from a scalar.
+ *
+ * @param _op_ the operator (e.g. +=)
+ * @param _op_name_ the op functor (e.g. et::OpAssign)
+ *
+ * @internal This shouldn't be used for ops, like +=, which aren't
+ * defined in vector algebra.
+ */
+#define CML_MAT_ASSIGN_FROM_SCALAR(_op_, _op_name_) \
+matrix_type& operator _op_ (ELEMENT_ARG_TYPE s) { \
+ typedef _op_name_ <Element,value_type> OpT; \
+ et::UnrollAssignment<OpT>(*this,s); \
+ return *this; \
+}
+
+
+/** Accumulated matrix multiplication.
+ *
+ * @throws std::invalid_argument if the matrices are not square.
+ */
+#define CML_ACCUMULATED_MATRIX_MULT(_arg_type_) \
+matrix_type& operator*=(_arg_type_ m) { \
+ typedef typename et::MatrixPromote< \
+ matrix_type, _arg_type_>::type result_type; \
+ cml::et::CheckedSquare(*this, typename result_type::size_tag()); \
+ return (*this = (*this)*m); \
+}
+
+
+/* These should only be used for testing: */
+#define CML_MATRIX_BRACE_OPERATORS \
+template<class Matrix> struct row_ref { \
+ typedef typename Matrix::reference reference; \
+ reference operator[](size_t col) { return m(row,col); } \
+ Matrix& m; \
+ size_t row; \
+}; \
+ \
+template<class Matrix> struct const_row_ref { \
+ typedef typename Matrix::const_reference const_reference; \
+ const_reference operator[](size_t col) const { return m(row,col); } \
+ const Matrix& m; \
+ size_t row; \
+}; \
+ \
+row_ref<matrix_type> operator[](size_t row) { \
+ row_ref<matrix_type> ref = { *this, row }; return ref; \
+} \
+ \
+const_row_ref<matrix_type> operator[](size_t row) const { \
+ const_row_ref<matrix_type> ref = { *this, row }; return ref; \
+}
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Compute the determinant of a square matrix using LU factorization.
+ *
+ * @todo This should be specialized on the matrix size for small matrices.
+ */
+
+#ifndef determinant_h
+#define determinant_h
+
+#include <cml/matrix/lu.h>
+
+namespace cml {
+namespace detail {
+
+/* Need to use a functional, since template functions cannot be
+ * specialized. N is used to differentiate dimension only, so this can be
+ * used for any matrix size type:
+ */
+template<typename MatT, int N> struct determinant_f;
+
+/* 2x2 determinant. Despite being marked for fixed_size matrices, this can
+ * be used for dynamic-sized ones also:
+ */
+template<typename MatT>
+struct determinant_f<MatT,2>
+{
+ typename MatT::value_type operator()(const MatT& M) const
+ {
+ return M(0,0)*M(1,1) - M(1,0)*M(0,1);
+ }
+
+};
+
+/* 3x3 determinant. Despite being marked for fixed_size matrices, this can
+ * be used for dynamic-sized ones also:
+ */
+template<typename MatT>
+struct determinant_f<MatT,3>
+{
+ /* [00 01 02]
+ * M = [10 11 12]
+ * [20 21 22]
+ */
+ typename MatT::value_type operator()(const MatT& M) const
+ {
+ return M(0,0)*(M(1,1)*M(2,2) - M(1,2)*M(2,1))
+ + M(0,1)*(M(1,2)*M(2,0) - M(1,0)*M(2,2))
+ + M(0,2)*(M(1,0)*M(2,1) - M(1,1)*M(2,0));
+ }
+
+};
+
+/* 4x4 determinant. Despite being marked for fixed_size matrices, this can
+ * be used for dynamic-sized ones also:
+ */
+template<typename MatT>
+struct determinant_f<MatT,4>
+{
+ /* [00 01 02 03]
+ * M = [10 11 12 13]
+ * [20 21 22 23]
+ * [30 31 32 33]
+ *
+ * |11 12 13| |10 12 13|
+ * C00 = |21 22 23| C01 = |20 22 23|
+ * |31 32 33| |30 32 33|
+ *
+ * |10 11 13| |10 11 12|
+ * C02 = |20 21 23| C03 = |20 21 22|
+ * |30 31 33| |30 31 32|
+ *
+ * d00 = 11 * (22*33 - 23*32) d01 = 10 * (22*33 - 23*32)
+ * + 12 * (23*31 - 21*33) + 12 * (23*30 - 20*33)
+ * + 13 * (21*32 - 22*31) + 13 * (20*32 - 22*30)
+ *
+ * d02 = 10 * (21*33 - 23*31) d03 = 10 * (21*32 - 22*31)
+ * + 11 * (23*30 - 20*33) + 11 * (22*30 - 20*32)
+ * + 13 * (20*31 - 21*30) + 12 * (20*31 - 21*30)
+ */
+ typename MatT::value_type operator()(const MatT& M) const
+ {
+ /* Shorthand. */
+ typedef typename MatT::value_type value_type;
+
+ /* Common cofactors: */
+ value_type m_22_33_23_32 = M(2,2)*M(3,3) - M(2,3)*M(3,2);
+ value_type m_23_30_20_33 = M(2,3)*M(3,0) - M(2,0)*M(3,3);
+ value_type m_20_31_21_30 = M(2,0)*M(3,1) - M(2,1)*M(3,0);
+ value_type m_21_32_22_31 = M(2,1)*M(3,2) - M(2,2)*M(3,1);
+ value_type m_23_31_21_33 = M(2,3)*M(3,1) - M(2,1)*M(3,3);
+ value_type m_20_32_22_30 = M(2,0)*M(3,2) - M(2,2)*M(3,0);
+
+ value_type d00 = M(0,0)*(
+ M(1,1) * m_22_33_23_32
+ + M(1,2) * m_23_31_21_33
+ + M(1,3) * m_21_32_22_31);
+
+ value_type d01 = M(0,1)*(
+ M(1,0) * m_22_33_23_32
+ + M(1,2) * m_23_30_20_33
+ + M(1,3) * m_20_32_22_30);
+
+ value_type d02 = M(0,2)*(
+ M(1,0) * - m_23_31_21_33
+ + M(1,1) * m_23_30_20_33
+ + M(1,3) * m_20_31_21_30);
+
+ value_type d03 = M(0,3)*(
+ M(1,0) * m_21_32_22_31
+ + M(1,1) * - m_20_32_22_30
+ + M(1,2) * m_20_31_21_30);
+
+ return d00 - d01 + d02 - d03;
+ }
+
+};
+
+/* General NxN determinant by LU factorization: */
+template<typename MatT, int N>
+struct determinant_f
+{
+ typename MatT::value_type operator()(const MatT& M) const
+ {
+ /* Compute the LU factorization: */
+ typename MatT::temporary_type LU = lu(M);
+
+ /* The product of the diagonal entries is the determinant: */
+ typename MatT::value_type det = LU(0,0);
+ for(size_t i = 1; i < LU.rows(); ++ i)
+ det *= LU(i,i);
+ return det;
+ }
+
+};
+
+/* Generator for the determinant functional for fixed-size matrices: */
+template<typename MatT> typename MatT::value_type
+determinant(const MatT& M, fixed_size_tag)
+{
+ /* Require a square matrix: */
+ cml::et::CheckedSquare(M, fixed_size_tag());
+ return determinant_f<MatT,MatT::array_rows>()(M);
+}
+
+/* Generator for the determinant functional for dynamic-size matrices: */
+template<typename MatT> typename MatT::value_type
+determinant(const MatT& M, dynamic_size_tag)
+{
+ /* Require a square matrix: */
+ cml::et::CheckedSquare(M, dynamic_size_tag());
+
+ /* Dispatch based upon the matrix dimension: */
+ switch(M.rows()) {
+ case 2: return determinant_f<MatT,2>()(M);
+ case 3: return determinant_f<MatT,3>()(M);
+ case 4: return determinant_f<MatT,4>()(M);
+ default: return determinant_f<MatT,0>()(M); // > 4x4.
+ }
+}
+
+} // namespace detail
+
+/** Determinant of a matrix. */
+template<typename E, class AT, class BO, class L> inline E
+determinant(const matrix<E,AT,BO,L>& M)
+{
+ typedef typename matrix<E,AT,BO,L>::size_tag size_tag;
+ return detail::determinant(M,size_tag());
+}
+
+/** Determinant of a matrix expression. */
+template<typename XprT> inline typename XprT::value_type
+determinant(const et::MatrixXpr<XprT>& e)
+{
+ typedef typename et::MatrixXpr<XprT>::size_tag size_tag;
+ return detail::determinant(e,size_tag());
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef dynamic_matrix_h
+#define dynamic_matrix_h
+
+#include <cml/core/dynamic_2D.h>
+#include <cml/matrix/matrix_expr.h>
+#include <cml/matrix/class_ops.h>
+#include <cml/matrix/matrix_unroller.h>
+
+namespace cml {
+
+/** Resizeable, dynamic-memory matrix. */
+template<typename Element, typename Alloc,
+ typename BasisOrient, typename Layout>
+class matrix<Element,dynamic<Alloc>,BasisOrient,Layout>
+: public dynamic_2D<Element,Layout,Alloc>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef dynamic<Alloc> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef dynamic_2D<Element,Layout,Alloc> array_type;
+
+ /* Shorthand for the type of this matrix: */
+ typedef matrix<Element,generator_type,BasisOrient,Layout> matrix_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix_type temporary_type;
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ /* For integration into the expression templates code: */
+ typedef matrix_type& expr_reference;
+ typedef const matrix_type& expr_const_reference;
+
+ /* For matching by basis: */
+ typedef BasisOrient basis_orient;
+
+ /* For matching by memory layout: */
+ typedef typename array_type::layout layout;
+
+ /* For matching by storage type: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type if necessary: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef typename array_type::resizing_tag resizing_tag;
+
+ /* For matching by result type: */
+ typedef cml::et::matrix_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef matrix<
+ Element,
+ typename array_type::transposed_type::generator_type,
+ BasisOrient,
+ Layout
+ > transposed_type;
+
+ /* To simplify the matrix row and column operators: */
+ typedef vector<
+ Element,
+ typename array_type::row_array_type::generator_type
+ > row_vector_type;
+
+ typedef vector<
+ Element,
+ typename array_type::col_array_type::generator_type
+ > col_vector_type;
+
+
+ public:
+
+ /** Set this matrix to zero. */
+ matrix_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this matrix to the identity.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& identity() {
+ for(size_t i = 0; i < this->rows(); ++ i) {
+ for(size_t j = 0; j < this->cols(); ++ j) {
+ (*this)(i,j) = value_type((i == j)?1:0);
+ }
+ }
+ return *this;
+ }
+
+ /** Set this matrix to its transpose.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& transpose() {
+ /* transpose() returns a temporary: */
+ *this = cml::transpose(*this);
+ return *this;
+ }
+
+ /** Set this matrix to its inverse.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& inverse() {
+ /* inverse() returns a temporary: */
+ *this = cml::inverse(*this);
+ return *this;
+ }
+
+ /* NOTE: minimize() and maximize() no longer supported (Jesse) */
+
+ #if 0
+ /** Pairwise minimum of this matrix with another. */
+ template<typename E, class AT, typename L>
+ void minimize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = std::min((*this)(i,j),v(i,j));
+ }
+ }
+ }
+
+ /** Pairwise maximum of this matrix with another. */
+ template<typename E, class AT, typename L>
+ void maximize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = std::max((*this)(i,j),v(i,j));
+ }
+ }
+ }
+ #endif
+
+ /* Set each element to a random number in the range [min,max] */
+ void random(ELEMENT_ARG_TYPE min, ELEMENT_ARG_TYPE max) {
+ for(size_t i = 0; i < this->rows(); ++i) {
+ for(size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = cml::random_real(min,max);
+ }
+ }
+ }
+
+
+ public:
+
+ /** Default constructor. */
+ matrix() {}
+
+ /** Constructor for dynamically-sized arrays.
+ *
+ * @param rows specify the number of rows.
+ * @param cols specify the number of cols.
+ */
+ explicit matrix(size_t rows, size_t cols)
+ : array_type(rows,cols) {}
+
+
+ public:
+
+ /** Return the matrix size as a pair. */
+ matrix_size size() const {
+ return matrix_size(this->rows(),this->cols());
+ }
+
+ /** Return element j of basis vector i. */
+ value_type basis_element(size_t i, size_t j) const {
+ return basis_element(i,j,basis_orient());
+ }
+
+ /** Set the given basis element. */
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s) {
+ set_basis_element(i,j,s,basis_orient());
+ }
+
+
+ public:
+
+ /* Define common class operators: */
+
+ CML_CONSTRUCT_MAT_22
+ CML_CONSTRUCT_MAT_33
+ CML_CONSTRUCT_MAT_44
+
+ CML_MAT_COPY_FROM_ARRAY(: array_type())
+ CML_MAT_COPY_FROM_MATTYPE
+ CML_MAT_COPY_FROM_MAT
+ CML_MAT_COPY_FROM_MATXPR
+
+ CML_ASSIGN_MAT_22
+ CML_ASSIGN_MAT_33
+ CML_ASSIGN_MAT_44
+
+ CML_MAT_ASSIGN_FROM_MATTYPE
+
+ CML_MAT_ASSIGN_FROM_MAT(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MAT(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MAT(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_MATXPR(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_SCALAR(*=, et::OpMulAssign)
+ CML_MAT_ASSIGN_FROM_SCALAR(/=, et::OpDivAssign)
+
+ /** Accumulated matrix multiplication.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& operator*=(const matrix_type& m) {
+ /* Matrix multiplication returns a temporary: */
+ *this = (*this)*m;
+ return *this;
+ }
+
+ /** Accumulated matrix multiplication.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ template<typename E, class AT, typename BO, typename L> matrix_type&
+ operator*=(const matrix<E,AT,BO,L>& m) {
+ /* Matrix multiplication returns a temporary: */
+ *this = (*this)*m;
+ return *this;
+ }
+
+ /** Accumulated matrix multiplication.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ template<class XprT> matrix_type&
+ operator*=(MATXPR_ARG_TYPE e) {
+ /* Verify that a promotion exists at compile time: */
+ typedef typename et::MatrixPromote<
+ matrix_type, typename XprT::result_type>::type result_type;
+ /* Matrix multiplication returns a temporary: */
+ *this = (*this)*e;
+ return *this;
+ }
+
+
+ protected:
+
+ value_type basis_element(size_t i, size_t j, row_basis) const {
+ return (*this)(i,j);
+ }
+
+ value_type basis_element(size_t i, size_t j, col_basis) const {
+ return (*this)(j,i);
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, row_basis) {
+ (*this)(i,j) = s;
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, col_basis) {
+ (*this)(j,i) = s;
+ }
+
+
+ public:
+
+ /* Braces should only be used for testing: */
+#if defined(CML_ENABLE_MATRIX_BRACES)
+ CML_MATRIX_BRACE_OPERATORS
+#endif
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef external_matrix_h
+#define external_matrix_h
+
+#include <cml/core/external_2D.h>
+#include <cml/matrix/matrix_expr.h>
+#include <cml/matrix/class_ops.h>
+#include <cml/matrix/matrix_unroller.h>
+#include <cml/matrix/dynamic.h>
+
+namespace cml {
+
+/** Fixed-size, external-memory matrix. */
+template<typename Element, int Rows, int Cols,
+ typename BasisOrient, typename Layout>
+class matrix<Element,external<Rows,Cols>,BasisOrient,Layout>
+: public external_2D<Element,Rows,Cols,Layout>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef external<Rows,Cols> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef external_2D<Element,Rows,Cols,Layout> array_type;
+
+ /* Shorthand for the type of this matrix: */
+ typedef matrix<Element,generator_type,BasisOrient,Layout> matrix_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix<Element,fixed<Rows,Cols>,BasisOrient,Layout> temporary_type;
+ /* Note: this ensures that an external matrix is copied into the proper
+ * temporary; external<> temporaries are not allowed.
+ */
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ typedef matrix_type& expr_reference;
+ typedef const matrix_type& expr_const_reference;
+
+ /* For matching by basis: */
+ typedef BasisOrient basis_orient;
+
+ /* For matching by memory layout: */
+ typedef typename array_type::layout layout;
+
+ /* For matching by storage type if necessary: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type if necessary: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef typename array_type::resizing_tag resizing_tag;
+
+ /* For matching by result-type: */
+ typedef cml::et::matrix_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef matrix<
+ Element,
+ typename array_type::transposed_type::generator_type,
+ BasisOrient,
+ Layout
+ > transposed_type;
+
+ /* To simplify the matrix row and column operators: */
+ typedef vector<
+ Element,
+ typename array_type::row_array_type::generator_type
+ > row_vector_type;
+
+ typedef vector<
+ Element,
+ typename array_type::col_array_type::generator_type
+ > col_vector_type;
+
+
+ public:
+
+ /** Set this matrix to zero. */
+ matrix_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this matrix to the identity.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& identity() {
+ for(size_t i = 0; i < this->rows(); ++ i) {
+ for(size_t j = 0; j < this->cols(); ++ j) {
+ (*this)(i,j) = value_type((i == j)?1:0);
+ }
+ }
+ return *this;
+ }
+
+ /** Set this matrix to its transpose.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& transpose() {
+ /* transpose() returns a temporary: */
+ *this = transpose(*this);
+ return *this;
+ }
+
+ /** Set this matrix to its inverse.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& inverse() {
+ /* inverse() returns a temporary: */
+ *this = cml::inverse(*this);
+ return *this;
+ }
+
+ /* NOTE: minimize() and maximize() no longer supported (Jesse) */
+
+ #if 0
+ /** Pairwise minimum of this matrix with another. */
+ template<typename E, class AT, typename L>
+ void minimize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = std::min((*this)(i,j),v(i,j));
+ }
+ }
+ }
+
+ /** Pairwise maximum of this matrix with another. */
+ template<typename E, class AT, typename L>
+ void maximize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = std::max((*this)(i,j),v(i,j));
+ }
+ }
+ }
+ #endif
+
+ /* Set each element to a random number in the range [min,max] */
+ void random(ELEMENT_ARG_TYPE min, ELEMENT_ARG_TYPE max) {
+ for(size_t i = 0; i < this->rows(); ++i) {
+ for(size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = random_real(min,max);
+ }
+ }
+ }
+
+
+ public:
+
+ /** Constructor for fixed-size external matrices.
+ *
+ * The array must be given as a pointer to Element*, not a
+ * multi-dimensional array. The caller owns the pointer, and is
+ * responsible for doing any necessary memory management.
+ *
+ * @param ptr specify the external pointer.
+ *
+ * @throws same as the ArrayType constructor.
+ */
+ explicit matrix(value_type ptr[Rows][Cols]) : array_type(ptr) {}
+
+ /** Constructor for fixed-size external matrices.
+ *
+ * The array must be given as a pointer to Element*, not a
+ * multi-dimensional array. The caller owns the pointer, and is
+ * responsible for doing any necessary memory management.
+ *
+ * @param ptr specify the external pointer.
+ *
+ * @throws same as the ArrayType constructor.
+ */
+ explicit matrix(value_type* ptr) : array_type(ptr) {}
+
+
+ public:
+
+ /** Return the matrix size as a pair. */
+ matrix_size size() const {
+ return matrix_size(this->rows(),this->cols());
+ }
+
+ /** Return element j of basis vector i. */
+ value_type basis_element(size_t i, size_t j) const {
+ return basis_element(i,j,basis_orient());
+ }
+
+ /** Set the given basis element. */
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s) {
+ set_basis_element(i,j,s,basis_orient());
+ }
+
+
+ public:
+
+ CML_ASSIGN_MAT_22
+ CML_ASSIGN_MAT_33
+ CML_ASSIGN_MAT_44
+
+ /* Define class operators for external matrices. Note: external matrices
+ * cannot be copy-constructed, but they can be assigned to:
+ */
+ CML_MAT_ASSIGN_FROM_MATTYPE
+
+ CML_MAT_ASSIGN_FROM_MAT(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MAT(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MAT(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_MATXPR(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_SCALAR(*=, et::OpMulAssign)
+ CML_MAT_ASSIGN_FROM_SCALAR(/=, et::OpDivAssign)
+
+ CML_ACCUMULATED_MATRIX_MULT(const matrix_type&)
+
+ template<typename E, class AT, typename BO, typename L>
+ CML_ACCUMULATED_MATRIX_MULT(const TEMPLATED_MATRIX_MACRO&)
+
+ template<class XprT>
+ CML_ACCUMULATED_MATRIX_MULT(MATXPR_ARG_TYPE)
+
+
+ protected:
+
+ value_type basis_element(size_t i, size_t j, row_basis) const {
+ return (*this)(i,j);
+ }
+
+ value_type basis_element(size_t i, size_t j, col_basis) const {
+ return (*this)(j,i);
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, row_basis) {
+ (*this)(i,j) = s;
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, col_basis) {
+ (*this)(j,i) = s;
+ }
+
+
+ public:
+
+ /* Braces should only be used for testing: */
+#if defined(CML_ENABLE_MATRIX_BRACES)
+ CML_MATRIX_BRACE_OPERATORS
+#endif
+};
+
+/** Dynamic-size, external-memory matrix. */
+template<typename Element, typename BasisOrient, typename Layout>
+class matrix<Element,external<-1,-1>,BasisOrient,Layout>
+: public external_2D<Element,-1,-1,Layout>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef external<> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef external_2D<Element,-1,-1,Layout> array_type;
+
+ /* Shorthand for the type of this matrix: */
+ typedef matrix<Element,generator_type,BasisOrient,Layout> matrix_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix<Element,dynamic<>,BasisOrient,Layout> temporary_type;
+ /* Note: this ensures that an external matrix is copied into the proper
+ * temporary; external<> temporaries are not allowed.
+ */
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ typedef matrix_type& expr_reference;
+ typedef const matrix_type& expr_const_reference;
+
+ /* For matching by basis: */
+ typedef BasisOrient basis_orient;
+
+ /* For matching by memory layout: */
+ typedef typename array_type::layout layout;
+
+ /* For matching by storage type if necessary: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type if necessary: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef typename array_type::resizing_tag resizing_tag;
+
+ /* For matching by result-type: */
+ typedef cml::et::matrix_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef matrix<
+ Element,
+ typename array_type::transposed_type::generator_type,
+ BasisOrient,
+ Layout
+ > transposed_type;
+
+ /* To simplify the matrix row and column operators: */
+ typedef vector<
+ Element,
+ typename array_type::row_array_type::generator_type
+ > row_vector_type;
+
+ typedef vector<
+ Element,
+ typename array_type::col_array_type::generator_type
+ > col_vector_type;
+
+
+ public:
+
+ /** Set this matrix to zero. */
+ matrix_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this matrix to the identity.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& identity() {
+ for(size_t i = 0; i < this->rows(); ++ i) {
+ for(size_t j = 0; j < this->cols(); ++ j) {
+ (*this)(i,j) = value_type((i == j)?1:0);
+ }
+ }
+ return *this;
+ }
+
+ /** Set this matrix to its transpose.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& transpose() {
+ /* transpose() returns a temporary: */
+ *this = cml::transpose(*this);
+ return *this;
+ }
+
+ /** Set this matrix to its inverse.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& inverse() {
+ /* inverse() returns a temporary: */
+ *this = inverse(*this);
+ return *this;
+ }
+
+ /** Pairwise minimum of this matrix with another. */
+ template<typename E, class AT, typename L>
+ void minimize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)[i] = std::min((*this)(i,j),v(i,j));
+ }
+ }
+ }
+
+ /** Pairwise maximum of this matrix with another. */
+ template<typename E, class AT, class BO, typename L>
+ void maximize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)[i] = std::max((*this)(i,j),v(i,j));
+ }
+ }
+ }
+
+ /* Set each element to a random number in the range [min,max] */
+ void random(ELEMENT_ARG_TYPE min, ELEMENT_ARG_TYPE max) {
+ for(size_t i = 0; i < this->rows(); ++i) {
+ for(size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = cml::random_real(min,max);
+ }
+ }
+ }
+
+
+ public:
+
+ /** Constructor for fixed-size external matrices.
+ *
+ * The array must be given as a pointer to Element*, not a
+ * multi-dimensional array. The caller owns the pointer, and is
+ * responsible for doing any necessary memory management.
+ *
+ * @param ptr specify the external pointer.
+ *
+ * @throws same as the ArrayType constructor.
+ */
+ explicit matrix(value_type* const ptr, size_t rows, size_t cols)
+ : array_type(ptr,rows,cols) {}
+
+
+ public:
+
+ /** Return the matrix size as a pair. */
+ matrix_size size() const {
+ return matrix_size(this->rows(),this->cols());
+ }
+
+ /** Return element j of basis vector i. */
+ value_type basis_element(size_t i, size_t j) const {
+ return basis_element(i,j,basis_orient());
+ }
+
+ /** Set the given basis element. */
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s) {
+ set_basis_element(i,j,s,basis_orient());
+ }
+
+
+ public:
+
+ CML_ASSIGN_MAT_22
+ CML_ASSIGN_MAT_33
+ CML_ASSIGN_MAT_44
+
+ /* Define class operators for external matrices. Note: external matrices
+ * cannot be copy-constructed, but they can be assigned to:
+ */
+ CML_MAT_ASSIGN_FROM_MATTYPE
+
+ CML_MAT_ASSIGN_FROM_MAT(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MAT(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MAT(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_MATXPR(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_SCALAR(*=, et::OpMulAssign)
+ CML_MAT_ASSIGN_FROM_SCALAR(/=, et::OpDivAssign)
+
+ CML_ACCUMULATED_MATRIX_MULT(const matrix_type&)
+
+ template<typename E, class AT, typename BO, typename L>
+ CML_ACCUMULATED_MATRIX_MULT(const TEMPLATED_MATRIX_MACRO&)
+
+ template<class XprT>
+ CML_ACCUMULATED_MATRIX_MULT(MATXPR_ARG_TYPE)
+
+
+ protected:
+
+ value_type basis_element(size_t i, size_t j, row_basis) const {
+ return (*this)(i,j);
+ }
+
+ value_type basis_element(size_t i, size_t j, col_basis) const {
+ return (*this)(j,i);
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, row_basis) {
+ (*this)(i,j) = s;
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, col_basis) {
+ (*this)(j,i) = s;
+ }
+
+
+ public:
+
+ /* Braces should only be used for testing: */
+#if defined(CML_ENABLE_MATRIX_BRACES)
+ CML_MATRIX_BRACE_OPERATORS
+#endif
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef fixed_matrix_h
+#define fixed_matrix_h
+
+#include <cml/core/fixed_2D.h>
+#include <cml/matrix/matrix_expr.h>
+#include <cml/matrix/class_ops.h>
+#include <cml/matrix/matrix_unroller.h>
+
+namespace cml {
+
+/** Fixed-size, fixed-memory matrix. */
+template<typename Element, int Rows, int Cols,
+ typename BasisOrient, typename Layout>
+class matrix<Element,fixed<Rows,Cols>,BasisOrient,Layout>
+: public fixed_2D<Element,Rows,Cols,Layout>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef fixed<Rows,Cols> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef fixed_2D<Element,Rows,Cols,Layout> array_type;
+
+ /* Shorthand for the type of this matrix: */
+ typedef matrix<Element,generator_type,BasisOrient,Layout> matrix_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef matrix_type temporary_type;
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ typedef matrix_type& expr_reference;
+ typedef const matrix_type& expr_const_reference;
+
+ /* For matching by basis: */
+ typedef BasisOrient basis_orient;
+
+ /* For matching by memory layout: */
+ typedef typename array_type::layout layout;
+
+ /* For matching by storage type if necessary: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type if necessary: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by result type: */
+ typedef cml::et::matrix_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+ /* To simplify the matrix transpose operator: */
+ typedef matrix<
+ Element,
+ typename array_type::transposed_type::generator_type,
+ BasisOrient,
+ Layout
+ > transposed_type;
+
+ /* To simplify the matrix row and column operators: */
+ typedef vector<
+ Element,
+ typename array_type::row_array_type::generator_type
+ > row_vector_type;
+
+ typedef vector<
+ Element,
+ typename array_type::col_array_type::generator_type
+ > col_vector_type;
+
+
+ public:
+
+ /** Set this matrix to zero. */
+ matrix_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this matrix to the identity.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& identity() {
+ for(size_t i = 0; i < this->rows(); ++ i) {
+ for(size_t j = 0; j < this->cols(); ++ j) {
+ (*this)(i,j) = value_type((i == j)?1:0);
+ }
+ }
+ return *this;
+ }
+
+ /** Set this matrix to its transpose.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& transpose() {
+ /* transpose() returns a temporary: */
+ *this = cml::transpose(*this);
+ return *this;
+ }
+
+ /** Set this matrix to its inverse.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ */
+ matrix_type& inverse() {
+ /* inverse() returns a temporary: */
+ *this = cml::inverse(*this);
+ return *this;
+ }
+
+ /* NOTE: minimize() and maximize() no longer supported (Jesse) */
+
+ #if 0
+ /** Pairwise minimum of this matrix with another. */
+ template<typename E, class AT, typename L>
+ void minimize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = std::min((*this)(i,j),v(i,j));
+ }
+ }
+ }
+
+ /** Pairwise maximum of this matrix with another. */
+ template<typename E, class AT, typename L>
+ void maximize(const matrix<E,AT,basis_orient,L>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->rows(); ++i) {
+ for (size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = std::max((*this)(i,j),v(i,j));
+ }
+ }
+ }
+ #endif
+
+ /* Set each element to a random number in the range [min,max] */
+ void random(ELEMENT_ARG_TYPE min, ELEMENT_ARG_TYPE max) {
+ for(size_t i = 0; i < this->rows(); ++i) {
+ for(size_t j = 0; j < this->cols(); ++j) {
+ (*this)(i,j) = cml::random_real(min,max);
+ }
+ }
+ }
+
+
+ public:
+
+ /** Default constructor.
+ *
+ * @throws same as the ArrayType constructor.
+ * @sa cml::fixed
+ * @sa cml::dynamic
+ */
+ matrix() {}
+
+
+ public:
+
+ /** Return the matrix size as a pair. */
+ matrix_size size() const {
+ return matrix_size(this->rows(),this->cols());
+ }
+
+ /** Return element j of basis vector i. */
+ value_type basis_element(size_t i, size_t j) const {
+ return basis_element(i,j,basis_orient());
+ }
+
+ /** Set the given basis element. */
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s) {
+ set_basis_element(i,j,s,basis_orient());
+ }
+
+
+ public:
+
+ /* Define common class operators: */
+
+ CML_CONSTRUCT_MAT_22
+ CML_CONSTRUCT_MAT_33
+ CML_CONSTRUCT_MAT_44
+
+ CML_MAT_COPY_FROM_FIXED_ARRAY(
+ array_type::array_rows, array_type::array_cols)
+
+ CML_MAT_COPY_FROM_MATTYPE
+ CML_MAT_COPY_FROM_MAT
+ CML_MAT_COPY_FROM_MATXPR
+
+ CML_ASSIGN_MAT_22
+ CML_ASSIGN_MAT_33
+ CML_ASSIGN_MAT_44
+
+ CML_MAT_ASSIGN_FROM_MATTYPE
+
+ CML_MAT_ASSIGN_FROM_MAT(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MAT(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MAT(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_MATXPR(=, et::OpAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(+=, et::OpAddAssign)
+ CML_MAT_ASSIGN_FROM_MATXPR(-=, et::OpSubAssign)
+
+ CML_MAT_ASSIGN_FROM_SCALAR(*=, et::OpMulAssign)
+ CML_MAT_ASSIGN_FROM_SCALAR(/=, et::OpDivAssign)
+
+ CML_ACCUMULATED_MATRIX_MULT(const matrix_type&)
+
+ template<typename E, class AT, typename BO, typename L>
+ CML_ACCUMULATED_MATRIX_MULT(const TEMPLATED_MATRIX_MACRO&)
+
+ template<class XprT>
+ CML_ACCUMULATED_MATRIX_MULT(MATXPR_ARG_TYPE)
+
+
+ protected:
+
+ value_type basis_element(size_t i, size_t j, row_basis) const {
+ return (*this)(i,j);
+ }
+
+ value_type basis_element(size_t i, size_t j, col_basis) const {
+ return (*this)(j,i);
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, row_basis) {
+ (*this)(i,j) = s;
+ }
+
+ void set_basis_element(size_t i, size_t j, ELEMENT_ARG_TYPE s, col_basis) {
+ (*this)(j,i) = s;
+ }
+
+
+ public:
+
+ /* Braces should only be used for testing: */
+#if defined(CML_ENABLE_MATRIX_BRACES)
+ CML_MATRIX_BRACE_OPERATORS
+#endif
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Compute the inverse of a matrix by LU factorization.
+ */
+
+#ifndef matrix_inverse_h
+#define matrix_inverse_h
+
+#include <cml/matrix/lu.h>
+
+namespace cml {
+namespace detail {
+
+/* Need to use a functional, since template functions cannot be
+ * specialized. _tag is used to specialize based upon dimension:
+ */
+template<typename MatT, int _tag> struct inverse_f;
+
+/* @todo: Reciprocal optimization for division by determinant.
+ */
+
+/* 2x2 inverse. Despite being marked for fixed_size matrices, this can
+ * be used for dynamic-sized ones also:
+ */
+template<typename MatT>
+struct inverse_f<MatT,2>
+{
+ typename MatT::temporary_type operator()(const MatT& M) const
+ {
+ typedef typename MatT::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+
+ /* Matrix containing the inverse: */
+ temporary_type Z;
+ cml::et::detail::Resize(Z,2,2);
+
+ /* Compute determinant and inverse: */
+ value_type D = value_type(1) / (M(0,0)*M(1,1) - M(0,1)*M(1,0));
+ Z(0,0) = M(1,1)*D; Z(0,1) = - M(0,1)*D;
+ Z(1,0) = - M(1,0)*D; Z(1,1) = M(0,0)*D;
+
+ return Z;
+ }
+};
+
+/* 3x3 inverse. Despite being marked for fixed_size matrices, this can
+ * be used for dynamic-sized ones also:
+ */
+template<typename MatT>
+struct inverse_f<MatT,3>
+{
+ /* [00 01 02]
+ * M = [10 11 12]
+ * [20 21 22]
+ */
+ typename MatT::temporary_type operator()(const MatT& M) const
+ {
+ /* Shorthand. */
+ typedef typename MatT::value_type value_type;
+
+ /* Compute cofactors for each entry: */
+ value_type m_00 = M(1,1)*M(2,2) - M(1,2)*M(2,1);
+ value_type m_01 = M(1,2)*M(2,0) - M(1,0)*M(2,2);
+ value_type m_02 = M(1,0)*M(2,1) - M(1,1)*M(2,0);
+
+ value_type m_10 = M(0,2)*M(2,1) - M(0,1)*M(2,2);
+ value_type m_11 = M(0,0)*M(2,2) - M(0,2)*M(2,0);
+ value_type m_12 = M(0,1)*M(2,0) - M(0,0)*M(2,1);
+
+ value_type m_20 = M(0,1)*M(1,2) - M(0,2)*M(1,1);
+ value_type m_21 = M(0,2)*M(1,0) - M(0,0)*M(1,2);
+ value_type m_22 = M(0,0)*M(1,1) - M(0,1)*M(1,0);
+
+ /* Compute determinant from the minors: */
+ value_type D =
+ value_type(1) / (M(0,0)*m_00 + M(0,1)*m_01 + M(0,2)*m_02);
+
+ /* Matrix containing the inverse: */
+ typename MatT::temporary_type Z;
+ cml::et::detail::Resize(Z,3,3);
+
+ /* Assign the inverse as (1/D) * (cofactor matrix)^T: */
+ Z(0,0) = m_00*D; Z(0,1) = m_10*D; Z(0,2) = m_20*D;
+ Z(1,0) = m_01*D; Z(1,1) = m_11*D; Z(1,2) = m_21*D;
+ Z(2,0) = m_02*D; Z(2,1) = m_12*D; Z(2,2) = m_22*D;
+
+ return Z;
+ }
+};
+
+/* 4x4 inverse. Despite being marked for fixed_size matrices, this can
+ * be used for dynamic-sized ones also:
+ */
+template<typename MatT>
+struct inverse_f<MatT,4>
+{
+ /* [00 01 02 03]
+ * M = [10 11 12 13]
+ * [20 21 22 23]
+ * [30 31 32 33]
+ *
+ * |11 12 13| |10 12 13|
+ * C00 = |21 22 23| C01 = |20 22 23|
+ * |31 32 33| |30 32 33|
+ *
+ * |10 11 13| |10 11 12|
+ * C02 = |20 21 23| C03 = |20 21 22|
+ * |30 31 33| |30 31 32|
+ */
+ typename MatT::temporary_type operator()(const MatT& M) const
+ {
+ /* Shorthand. */
+ typedef typename MatT::value_type value_type;
+
+ /* Common cofactors, rows 0,1: */
+ value_type m_22_33_23_32 = M(2,2)*M(3,3) - M(2,3)*M(3,2);
+ value_type m_23_30_20_33 = M(2,3)*M(3,0) - M(2,0)*M(3,3);
+ value_type m_20_31_21_30 = M(2,0)*M(3,1) - M(2,1)*M(3,0);
+ value_type m_21_32_22_31 = M(2,1)*M(3,2) - M(2,2)*M(3,1);
+ value_type m_23_31_21_33 = M(2,3)*M(3,1) - M(2,1)*M(3,3);
+ value_type m_20_32_22_30 = M(2,0)*M(3,2) - M(2,2)*M(3,0);
+
+ /* Compute minors: */
+ value_type d00
+ = M(1,1)*m_22_33_23_32+M(1,2)*m_23_31_21_33+M(1,3)*m_21_32_22_31;
+
+ value_type d01
+ = M(1,0)*m_22_33_23_32+M(1,2)*m_23_30_20_33+M(1,3)*m_20_32_22_30;
+
+ value_type d02
+ = M(1,0)*-m_23_31_21_33+M(1,1)*m_23_30_20_33+M(1,3)*m_20_31_21_30;
+
+ value_type d03
+ = M(1,0)*m_21_32_22_31+M(1,1)*-m_20_32_22_30+M(1,2)*m_20_31_21_30;
+
+ /* Compute minors: */
+ value_type d10
+ = M(0,1)*m_22_33_23_32+M(0,2)*m_23_31_21_33+M(0,3)*m_21_32_22_31;
+
+ value_type d11
+ = M(0,0)*m_22_33_23_32+M(0,2)*m_23_30_20_33+M(0,3)*m_20_32_22_30;
+
+ value_type d12
+ = M(0,0)*-m_23_31_21_33+M(0,1)*m_23_30_20_33+M(0,3)*m_20_31_21_30;
+
+ value_type d13
+ = M(0,0)*m_21_32_22_31+M(0,1)*-m_20_32_22_30+M(0,2)*m_20_31_21_30;
+
+ /* Common cofactors, rows 2,3: */
+ value_type m_02_13_03_12 = M(0,2)*M(1,3) - M(0,3)*M(1,2);
+ value_type m_03_10_00_13 = M(0,3)*M(1,0) - M(0,0)*M(1,3);
+ value_type m_00_11_01_10 = M(0,0)*M(1,1) - M(0,1)*M(1,0);
+ value_type m_01_12_02_11 = M(0,1)*M(1,2) - M(0,2)*M(1,1);
+ value_type m_03_11_01_13 = M(0,3)*M(1,1) - M(0,1)*M(1,3);
+ value_type m_00_12_02_10 = M(0,0)*M(1,2) - M(0,2)*M(1,0);
+
+ /* Compute minors (uses row 3 as the multipliers instead of row 0,
+ * which uses the same signs as row 0):
+ */
+ value_type d20
+ = M(3,1)*m_02_13_03_12+M(3,2)*m_03_11_01_13+M(3,3)*m_01_12_02_11;
+
+ value_type d21
+ = M(3,0)*m_02_13_03_12+M(3,2)*m_03_10_00_13+M(3,3)*m_00_12_02_10;
+
+ value_type d22
+ = M(3,0)*-m_03_11_01_13+M(3,1)*m_03_10_00_13+M(3,3)*m_00_11_01_10;
+
+ value_type d23
+ = M(3,0)*m_01_12_02_11+M(3,1)*-m_00_12_02_10+M(3,2)*m_00_11_01_10;
+
+ /* Compute minors: */
+ value_type d30
+ = M(2,1)*m_02_13_03_12+M(2,2)*m_03_11_01_13+M(2,3)*m_01_12_02_11;
+
+ value_type d31
+ = M(2,0)*m_02_13_03_12+M(2,2)*m_03_10_00_13+M(2,3)*m_00_12_02_10;
+
+ value_type d32
+ = M(2,0)*-m_03_11_01_13+M(2,1)*m_03_10_00_13+M(2,3)*m_00_11_01_10;
+
+ value_type d33
+ = M(2,0)*m_01_12_02_11+M(2,1)*-m_00_12_02_10+M(2,2)*m_00_11_01_10;
+
+ /* Finally, compute determinant from the minors, and assign the
+ * inverse as (1/D) * (cofactor matrix)^T:
+ */
+ typename MatT::temporary_type Z;
+ cml::et::detail::Resize(Z,4,4);
+
+ value_type D = value_type(1) /
+ (M(0,0)*d00 - M(0,1)*d01 + M(0,2)*d02 - M(0,3)*d03);
+ Z(0,0) = +d00*D; Z(0,1) = -d10*D; Z(0,2) = +d20*D; Z(0,3) = -d30*D;
+ Z(1,0) = -d01*D; Z(1,1) = +d11*D; Z(1,2) = -d21*D; Z(1,3) = +d31*D;
+ Z(2,0) = +d02*D; Z(2,1) = -d12*D; Z(2,2) = +d22*D; Z(2,3) = -d32*D;
+ Z(3,0) = -d03*D; Z(3,1) = +d13*D; Z(3,2) = -d23*D; Z(3,3) = +d33*D;
+
+ return Z;
+ }
+};
+
+/* If more extensive general linear algebra functionality is offered in
+ * future versions it may be useful to make the elementary row and column
+ * operations separate functions. For now they're simply performed in place,
+ * but the commented-out lines of code show where the calls to these functions
+ * should go if and when they become available.
+ */
+
+/* @todo: In-place version, and address memory allocation for pivot vector.
+ */
+
+/* General NxN inverse by Gauss-Jordan elimination with full pivoting: */
+template<typename MatT, int _tag>
+struct inverse_f
+{
+ typename MatT::temporary_type operator()(const MatT& M) const
+ {
+ /* Shorthand. */
+ typedef typename MatT::value_type value_type;
+
+ /* Size of matrix */
+ size_t N = M.rows();
+
+ /* Matrix containing the inverse: */
+ typename MatT::temporary_type Z;
+ cml::et::detail::Resize(Z,N,N);
+ Z = M;
+
+ /* For tracking pivots */
+ std::vector<size_t> row_index(N);
+ std::vector<size_t> col_index(N);
+ std::vector<size_t> pivoted(N,0);
+
+ /* For each column */
+ for (size_t i = 0; i < N; ++i) {
+
+ /* Find the pivot */
+ size_t row = 0, col = 0;
+ value_type max = value_type(0);
+ for (size_t j = 0; j < N; ++j) {
+ if (!pivoted[j]) {
+ for (size_t k = 0; k < N; ++k) {
+ if (!pivoted[k]) {
+ value_type mag = std::fabs(Z(j,k));
+ if (mag > max) {
+ max = mag;
+ row = j;
+ col = k;
+ }
+ }
+ }
+ }
+ }
+
+ /* TODO: Check max against epsilon here to catch singularity */
+
+ row_index[i] = row;
+ col_index[i] = col;
+
+ /* Swap rows if necessary */
+ if (row != col) {
+ /*Z.row_op_swap(row,col);*/
+ for (size_t j = 0; j < Z.cols(); ++j) {
+ std::swap(Z(row,j),Z(col,j));
+ }
+ }
+
+ /* Process pivot row */
+ pivoted[col] = true;
+ value_type pivot = Z(col,col);
+ Z(col,col) = value_type(1);
+ /*Z.row_op_mult(col,value_type(1)/pivot);*/
+ value_type k = value_type(1)/pivot;
+ for (size_t j = 0; j < Z.cols(); ++j) {
+ Z(col,j) *= k;
+ }
+
+ /* Process other rows */
+ for (size_t j = 0; j < N; ++j) {
+ if (j != col) {
+ value_type mult = -Z(j,col);
+ Z(j,col) = value_type(0);
+ /*Z.row_op_add_mult(col,j,mult);*/
+ for (size_t k = 0; k < Z.cols(); ++k) {
+ Z(j,k) += mult * Z(col,k);
+ }
+ }
+ }
+ }
+
+ /* Swap columns if necessary */
+ for (int i = N-1; i >= 0; --i) {
+ if (row_index[i] != col_index[i]) {
+ /*Z.col_op_swap(row_index[i],col_index[i]);*/
+ for (size_t j = 0; j < Z.rows(); ++j) {
+ std::swap(Z(j,row_index[i]),Z(j,col_index[i]));
+ }
+ }
+ }
+
+ /* Return result */
+ return Z;
+ }
+};
+
+/* Inversion by LU factorization is turned off for now due to lack of
+ * pivoting in the implementation, but we may switch back to it at some future
+ * time.
+ */
+
+#if 0
+
+/* General NxN inverse by LU factorization: */
+template<typename MatT, int _tag>
+struct inverse_f
+{
+ typename MatT::temporary_type operator()(const MatT& M) const
+ {
+ /* Shorthand. */
+ typedef typename MatT::value_type value_type;
+
+ /* Compute LU factorization: */
+ size_t N = M.rows();
+ typename MatT::temporary_type LU;
+ cml::et::detail::Resize(LU,N,N);
+ LU = lu(M);
+
+ /* Matrix containing the inverse: */
+ typename MatT::temporary_type Z;
+ cml::et::detail::Resize(Z,N,N);
+
+ typename MatT::col_vector_type v, x;
+ cml::et::detail::Resize(v,N);
+ cml::et::detail::Resize(x,N);
+ for(size_t i = 0; i < N; ++i)
+ v[i] = value_type(0);
+ /* XXX Need a fill() function here. */
+
+ /* Use lu_solve to solve M*x = v for x, where v = [0 ... 1 ... 0]^T: */
+ for(size_t i = 0; i < N; ++i) {
+ v[i] = 1.;
+ x = lu_solve(LU,v);
+
+ /* x is column i of the inverse of LU: */
+ for(size_t k = 0; k < N; ++ k) {
+ Z(k,i) = x[k];
+ }
+ v[i] = 0.;
+ }
+
+ return Z;
+ }
+
+};
+
+#endif
+
+/* Note: force_NxN is for checking general NxN inversion against the special-
+ * case 2x2, 3x3 and 4x4 code. I'm leaving it in for now since we may need to
+ * test the NxN code further if the implementation changes. At some future
+ * time when the implementation is stable, everything related to force_NxN can
+ * be taken out.
+ */
+
+/* Note: Commenting the force_NxN stuff out, but leaving the code here in
+ * case we need to do more testing in the future.
+ */
+
+/* Generator for the inverse functional for fixed-size matrices: */
+template<typename MatT> typename MatT::temporary_type
+inverse(const MatT& M, fixed_size_tag/*, bool force_NxN*/)
+{
+ /* Require a square matrix: */
+ cml::et::CheckedSquare(M, fixed_size_tag());
+
+ /*
+ if (force_NxN) {
+ return inverse_f<MatT,0>()(M);
+ } else {
+ */
+ return inverse_f<MatT,MatT::array_rows>()(M);
+ /*
+ }
+ */
+}
+
+/* Generator for the inverse functional for dynamic-size matrices: */
+template<typename MatT> typename MatT::temporary_type
+inverse(const MatT& M, dynamic_size_tag/*, bool force_NxN*/)
+{
+ /* Require a square matrix: */
+ cml::et::CheckedSquare(M, dynamic_size_tag());
+
+ /*
+ if (force_NxN) {
+ return inverse_f<MatT,0>()(M);
+ } else {
+ */
+ /* Dispatch based upon the matrix dimension: */
+ switch(M.rows()) {
+ case 2: return inverse_f<MatT,2>()(M); // 2x2
+ case 3: return inverse_f<MatT,3>()(M); // 3x3
+ case 4: return inverse_f<MatT,4>()(M); // 4x4
+ default: return inverse_f<MatT,0>()(M); // > 4x4 (or 1x1)
+ }
+ /*
+ }
+ */
+}
+
+} // namespace detail
+
+/** Inverse of a matrix. */
+template<typename E, class AT, typename BO, typename L> inline
+typename matrix<E,AT,BO,L>::temporary_type
+inverse(const matrix<E,AT,BO,L>& M/*, bool force_NxN = false*/)
+{
+ typedef typename matrix<E,AT,BO,L>::size_tag size_tag;
+ return detail::inverse(M,size_tag()/*,force_NxN*/);
+}
+
+/** Inverse of a matrix expression. */
+template<typename XprT> inline
+typename et::MatrixXpr<XprT>::temporary_type
+inverse(const et::MatrixXpr<XprT>& e/*, bool force_NxN = false*/)
+{
+ typedef typename et::MatrixXpr<XprT>::size_tag size_tag;
+ return detail::inverse(e,size_tag()/*,force_NxN*/);
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Implements LU decomposition for square matrix expressions.
+ *
+ * @todo The LU implementation does not check for a zero diagonal entry
+ * (implying that the input has no LU factorization).
+ *
+ * @todo Should also have a pivoting implementation.
+ *
+ * @todo need to throw a numeric error if the determinant of the matrix
+ * given to lu(), lu_solve(), or inverse() is 0.
+ *
+ * @internal The implementation is the same for fixed- and dynamic-size
+ * matrices. It can be sped up for small matrices later.
+ */
+
+#ifndef lu_h
+#define lu_h
+
+#include <cml/et/size_checking.h>
+#include <cml/matrix/matrix_expr.h>
+#include <cml/matvec/matvec_promotions.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * lu is not provided with a matrix or MatrixExpr argument:
+ */
+struct lu_expects_a_matrix_arg_error;
+
+/* This is used below to create a more meaningful compile-time error when
+ * lu_inplace is not provided with an assignable matrix argument:
+ */
+struct lu_inplace_expects_an_assignable_matrix_arg_error;
+
+namespace cml {
+namespace detail {
+
+/* Compute the LU decomposition in-place: */
+template<class MatT> inline
+void lu_inplace(MatT& A)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<MatT> arg_traits;
+ typedef typename arg_traits::result_tag arg_result;
+ typedef typename arg_traits::assignable_tag arg_assignment;
+ typedef typename arg_traits::size_tag size_tag;
+ typedef typename arg_traits::value_type value_type;
+
+ /* lu_inplace() requires an assignable matrix expression: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<arg_result, et::matrix_result_tag>::is_true
+ && same_type<arg_assignment, et::assignable_tag>::is_true),
+ lu_inplace_expects_an_assignable_matrix_arg_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Verify that the matrix is square, and get the size: */
+ ssize_t N = (ssize_t) cml::et::CheckedSquare(A, size_tag());
+
+
+ for(ssize_t k = 0; k < N-1; ++k) {
+ /* XXX Should check if A(k,k) = 0! */
+ for(ssize_t i = k+1; i < N; ++i) {
+ value_type n = (A(i,k) /= A(k,k));
+ for(ssize_t j = k+1; j < N; ++ j) {
+ A(i,j) -= n*A(k,j);
+ }
+ }
+ }
+}
+
+/* Compute the LU decomposition, and return a copy of the result: */
+template<class MatT>
+inline typename MatT::temporary_type
+lu_copy(const MatT& M)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<MatT> arg_traits;
+ typedef typename arg_traits::result_tag arg_result;
+
+ /* lu_with_copy() requires a matrix expression: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<arg_result, et::matrix_result_tag>::is_true),
+ lu_expects_a_matrix_arg_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Use the in-place LU function, and return the result: */
+ typename MatT::temporary_type A;
+ cml::et::detail::Resize(A,M.rows(),M.cols());
+ A = M;
+ lu_inplace(A);
+ return A;
+}
+
+} // namespace detail
+
+/** LU factorization for a matrix. */
+template<typename E, class AT, typename BO, class L>
+inline typename matrix<E,AT,BO,L>::temporary_type
+lu(const matrix<E,AT,BO,L>& m)
+{
+ return detail::lu_copy(m);
+}
+
+/** LU factorization for a matrix expression. */
+template<typename XprT>
+inline typename et::MatrixXpr<XprT>::temporary_type
+lu(const et::MatrixXpr<XprT>& e)
+{
+ return detail::lu_copy(e);
+}
+
+/** Solve y = LUx for x.
+ *
+ * This solves Lb = y for b by forward substitution, then Ux = b for x by
+ * backward substitution.
+ */
+template<typename MatT, typename VecT> inline
+typename et::MatVecPromote<MatT,VecT>::temporary_type
+lu_solve(const MatT& LU, const VecT& b)
+{
+ /* Shorthand. */
+ typedef et::ExprTraits<MatT> lu_traits;
+ typedef typename et::MatVecPromote<MatT,VecT>::temporary_type vector_type;
+ typedef typename vector_type::value_type value_type;
+
+ /* Verify that the matrix is square, and get the size: */
+ ssize_t N = (ssize_t) cml::et::CheckedSquare(
+ LU, typename lu_traits::size_tag());
+
+ /* Verify that the matrix and vector have compatible sizes: */
+ et::CheckedSize(LU, b, typename vector_type::size_tag());
+
+ /* Solve Ly = b for y by forward substitution. The entries below the
+ * diagonal of LU correspond to L, understood to be below a diagonal of
+ * 1's:
+ */
+ vector_type y; cml::et::detail::Resize(y,N);
+ for(ssize_t i = 0; i < N; ++i) {
+ y[i] = b[i];
+ for(ssize_t j = 0; j < i; ++j) {
+ y[i] -= LU(i,j)*y[j];
+ }
+ }
+
+ /* Solve Ux = y for x by backward substitution. The entries at and above
+ * the diagonal of LU correspond to U:
+ */
+ vector_type x; cml::et::detail::Resize(x,N);
+ for(ssize_t i = N-1; i >= 0; --i) {
+ x[i] = y[i];
+ for(ssize_t j = i+1; j < N; ++j) {
+ x[i] -= LU(i,j)*x[j];
+ }
+ x[i] /= LU(i,i);
+ }
+
+ /* Return x: */
+ return x;
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines the various combinations of matrix expressions.
+ *
+ * Create unary and binary operators with macros. The available combinations
+ * are:
+ *
+ * Unary expressions:
+ *
+ * op Matrix -> Matrix
+ * op MatXpr -> Matrix
+ *
+ * Binary expressions:
+ *
+ * Matrix op Matrix -> Matrix
+ * MatXpr op Matrix -> MatXpr
+ * Matrix op MatXpr -> MatXpr
+ * MatXpr op MatXpr -> MatXpr
+ *
+ * Matrix op Scalar -> Matrix
+ * Scalar op Matrix -> Matrix
+ * MatXpr op Scalar -> MatXpr
+ * Scalar op MatXpr -> MatXpr
+ *
+ * All of the generator functions compress the expression tree by hoisting
+ * subexpressions into the containing expression. This has the effect of
+ * forcing only the root node of the expression tree to be a MatrixXpr.
+ * Every other node is a Unary or BinaryMatrixOp.
+ */
+#ifndef matop_macros_h
+#define matop_macros_h
+
+/** Declare a unary operator taking a matrix operand. */
+#define CML_MAT_UNIOP(_op_, _OpT_) \
+template<typename E, class AT, typename BO, typename L> \
+inline et::MatrixXpr< \
+ et::UnaryMatrixOp< matrix<E,AT,BO,L>, _OpT_ <E> > \
+> \
+ \
+_op_ (const matrix<E,AT,BO,L>& arg) \
+{ \
+ typedef et::UnaryMatrixOp< \
+ matrix<E,AT,BO,L>, _OpT_ <E> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(arg)); \
+}
+
+/** Declare a unary operator taking a et::MatrixXpr operand. */
+#define CML_MATXPR_UNIOP(_op_, _OpT_) \
+template<class XprT> \
+inline et::MatrixXpr< \
+ et::UnaryMatrixOp<XprT, _OpT_<typename XprT::value_type> > \
+> \
+ \
+_op_ (MATXPR_ARG_TYPE arg) \
+{ \
+ typedef et::UnaryMatrixOp< \
+ XprT, _OpT_<typename XprT::value_type> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(arg.expression())); \
+}
+
+/** Declare an operator taking two matrix operands. */
+#define CML_MAT_MAT_BINOP(_op_, _OpT_) \
+template<typename E1, class AT1, typename L1, \
+ typename E2, class AT2, typename L2, typename BO> \
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ matrix<E1,AT1,BO,L2>, matrix<E2,AT2,BO,L2>, _OpT_<E1,E2> > \
+> \
+ \
+_op_ ( \
+ const matrix<E1,AT1,BO,L1>& left, \
+ const matrix<E2,AT2,BO,L2>& right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ matrix<E1,AT1,BO,L1>, matrix<E2,AT2,BO,L2>, _OpT_<E1,E2> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(left,right)); \
+}
+
+/** Declare an operator taking a matrix and a et::MatrixXpr. */
+#define CML_MAT_MATXPR_BINOP(_op_, _OpT_) \
+template<typename E, class AT, typename BO, typename L, class XprT> \
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ matrix<E,AT,BO,L>, XprT, _OpT_ <E, typename XprT::value_type> \
+ > \
+> \
+ \
+_op_ ( \
+ const matrix<E,AT,BO,L>& left, \
+ MATXPR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ matrix<E,AT,BO,L>, XprT, \
+ _OpT_ <E, typename XprT::value_type> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(left,right.expression())); \
+}
+
+/** Declare an operator taking a et::MatrixXpr and a matrix. */
+#define CML_MATXPR_MAT_BINOP(_op_, _OpT_) \
+template<class XprT, typename E, class AT, typename BO, typename L> \
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ XprT, matrix<E,AT,BO,L>, _OpT_ <typename XprT::value_type, E> \
+ > \
+> \
+ \
+_op_ ( \
+ MATXPR_ARG_TYPE left, \
+ const matrix<E,AT,BO,L>& right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ XprT, matrix<E,AT,BO,L>, \
+ _OpT_ <typename XprT::value_type, E> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(left.expression(),right)); \
+}
+
+/** Declare an operator taking two et::MatrixXpr operands. */
+#define CML_MATXPR_MATXPR_BINOP(_op_, _OpT_) \
+template<class XprT1, class XprT2> \
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ XprT1, XprT2, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type \
+ > \
+ > \
+> \
+ \
+_op_ ( \
+ MATXPR_ARG_TYPE_N(1) left, \
+ MATXPR_ARG_TYPE_N(2) right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ XprT1, XprT2, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>( \
+ ExprT(left.expression(),right.expression())); \
+}
+
+
+/** Declare an operator taking a matrix and a scalar. */
+#define CML_MAT_SCALAR_BINOP(_op_, _OpT_) \
+template<typename E, class AT, typename BO, typename L, typename ScalarT>\
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ matrix<E,AT,BO,L>, ScalarT, _OpT_ <E,ScalarT> \
+ > \
+> \
+ \
+_op_ ( \
+ const matrix<E,AT,BO,L>& left, \
+ SCALAR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ matrix<E,AT,BO,L>, ScalarT, _OpT_ <E,ScalarT > \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(left,right)); \
+}
+
+/** Declare an operator taking a scalar and a matrix. */
+#define CML_SCALAR_MAT_BINOP(_op_, _OpT_) \
+template<typename ScalarT, typename E, class AT, typename BO, typename L>\
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ ScalarT, matrix<E,AT,BO,L>, _OpT_ <ScalarT,E> \
+ > \
+> \
+ \
+_op_ ( \
+ SCALAR_ARG_TYPE left, \
+ const matrix<E,AT,BO,L>& right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ ScalarT, matrix<E,AT,BO,L>, _OpT_<ScalarT,E> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(left,right)); \
+}
+
+/** Declare an operator taking a et::MatrixXpr and a scalar. */
+#define CML_MATXPR_SCALAR_BINOP(_op_, _OpT_) \
+template<class XprT, typename ScalarT> \
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ XprT, ScalarT, _OpT_ <typename XprT::value_type, ScalarT> \
+ > \
+> \
+ \
+_op_ ( \
+ MATXPR_ARG_TYPE left, \
+ SCALAR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ XprT, ScalarT, _OpT_ <typename XprT::value_type,ScalarT> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(left.expression(),right)); \
+}
+
+/** Declare an operator taking a scalar and a et::MatrixXpr. */
+#define CML_SCALAR_MATXPR_BINOP(_op_, _OpT_) \
+template<typename ScalarT, class XprT> \
+inline et::MatrixXpr< \
+ et::BinaryMatrixOp< \
+ ScalarT, XprT, _OpT_ <ScalarT, typename XprT::value_type> \
+ > \
+> \
+ \
+_op_ ( \
+ SCALAR_ARG_TYPE left, \
+ MATXPR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryMatrixOp< \
+ ScalarT, XprT, _OpT_ <ScalarT, typename XprT::value_type> \
+ > ExprT; \
+ return et::MatrixXpr<ExprT>(ExprT(left,right.expression())); \
+}
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * @todo The matrix and matrix order operators could probably be combined
+ * into a single templated implementation, since the only thing that is
+ * different is the access method.
+ */
+
+#ifndef matrix_comparison_h
+#define matrix_comparison_h
+
+#include <cml/core/cml_assert.h>
+#include <cml/et/size_checking.h>
+#include <cml/et/scalar_ops.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * matrix_comparison is not provided with matrix or MatrixExpr arguments:
+ */
+struct matrix_comparison_expects_matrix_args_error;
+
+#define CML_MAT_MAT_ORDER(_order_, _op_, _OpT_) \
+template<typename E1, class AT1, typename L1, \
+ typename E2, class AT2, typename L2, typename BO> \
+inline bool \
+_op_ ( \
+ const matrix<E1,AT1,L1,BO>& left, \
+ const matrix<E2,AT2,L2,BO>& right) \
+{ \
+ return detail::matrix_##_order_ (left, right, _OpT_ <E1,E2>()); \
+}
+
+#define CML_MAT_MATXPR_ORDER(_order_, _op_, _OpT_) \
+template<typename E, class AT, typename L, typename BO, class XprT> \
+inline bool \
+_op_ ( \
+ const matrix<E,AT,L,BO>& left, \
+ MATXPR_ARG_TYPE right) \
+{ \
+ return detail::matrix_##_order_ (left, right, \
+ _OpT_ <E, typename XprT::value_type>()); \
+}
+
+#define CML_MATXPR_MAT_ORDER(_order_, _op_, _OpT_) \
+template<class XprT, typename E, class AT, typename L, typename BO> \
+inline bool \
+_op_ ( \
+ MATXPR_ARG_TYPE left, \
+ const matrix<E,AT,L,BO>& right) \
+{ \
+ return detail::matrix_##_order_ (left, right, \
+ _OpT_ <typename XprT::value_type, E>()); \
+}
+
+#define CML_MATXPR_MATXPR_ORDER(_order_, _op_, _OpT_) \
+template<class XprT1, class XprT2> \
+inline bool \
+_op_ ( \
+ MATXPR_ARG_TYPE_N(1) left, \
+ MATXPR_ARG_TYPE_N(2) right) \
+{ \
+ return detail::matrix_##_order_ (left, right, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type>()); \
+}
+
+
+namespace cml {
+namespace detail {
+
+/** Matrix strict weak ordering relationship.
+ *
+ * OpT must implement a strict weak order on the matrix element type.
+ * operator< and operator> on integer and floating-point types are
+ * examples.
+ */
+template<typename LeftT, typename RightT, typename OpT>
+inline bool
+matrix_weak_order(const LeftT& left, const RightT& right, OpT)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+
+ /* matrix_comparison() requires matrix expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::MatrixExpressions<LeftT,RightT>::is_true),
+ matrix_comparison_expects_matrix_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas:
+ */
+
+ typedef typename et::MatrixPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::type result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* Verify expression size: */
+ matrix_size N = et::CheckedSize(left,right,size_tag());
+ for(ssize_t i = 0; i < N.first; ++ i) {
+ for(ssize_t j = 0; j < N.second; ++ j) {
+ if(OpT().apply(
+ left_traits().get(left,i,j),
+ right_traits().get(right,i,j)
+ ))
+ {
+ /* If weak order (a < b) is satisfied, return true: */
+ return true;
+ } else if(OpT().apply(
+ right_traits().get(right,i,j),
+ left_traits().get(left,i,j)
+ ))
+ {
+ /* If !(b < a), then return false: */
+ return false;
+ } else {
+
+ /* Have !(a < b) && !(b < a) <=> (a >= b && b >= a)
+ * <=> (a == b). so need to test next element:
+ */
+ continue;
+ }
+ }
+ }
+ /* XXX Can this be unrolled in any reasonable way? */
+
+ /* If we get here, then left == right: */
+ return false;
+}
+
+/** Matrix total order relationship.
+ *
+ * OpT must implement a total order on the matrix element type. operator<=
+ * and operator>= on integer and floating-point types are examples.
+ */
+template<typename LeftT, typename RightT, typename OpT>
+inline bool
+matrix_total_order(const LeftT& left, const RightT& right, OpT)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+
+ /* matrix_comparison() requires matrix expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::MatrixExpressions<LeftT,RightT>::is_true),
+ matrix_comparison_expects_matrix_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas:
+ */
+
+ typedef typename et::MatrixPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::type result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* Verify expression size: */
+ matrix_size N = et::CheckedSize(left,right,size_tag());
+ for(ssize_t i = 0; i < N.first; ++ i) {
+ for(ssize_t j = 0; j < N.second; ++ j) {
+
+ /* Test total order: */
+ if(OpT().apply(
+ left_traits().get(left,i,j),
+ right_traits().get(right,i,j)
+ ))
+ {
+ /* Automatically true if weak order (a <= b) && !(b <= a)
+ * <=> (a <= b) && (b > a) <=> (a < b) is satisfied:
+ */
+ if(!OpT().apply(
+ right_traits().get(right,i,j),
+ left_traits().get(left,i,j)
+ ))
+ return true;
+
+ /* Otherwise, have equality (a <= b) && (b <= a), so
+ * continue to next element:
+ */
+ else
+ continue;
+
+ } else {
+
+ /* Total order isn't satisfied (a > b), so return false: */
+ return false;
+ }
+ }
+ }
+ /* XXX Can this be unrolled in any reasonable way? */
+
+ /* Total (==) or weak (<) order was satisfied, so return true: */
+ return true;
+}
+
+}
+
+} // namespace cml
+
+/* XXX There is a better way to handle these with operator traits... */
+
+CML_MAT_VEC_ORDER( total_order, operator==, et::OpEqual)
+CML_MATXPR_MAT_ORDER( total_order, operator==, et::OpEqual)
+CML_MAT_MATXPR_ORDER( total_order, operator==, et::OpEqual)
+CML_MATXPR_VECXPR_ORDER( total_order, operator==, et::OpEqual)
+
+CML_MAT_VEC_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_MATXPR_MAT_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_MAT_MATXPR_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_MATXPR_VECXPR_ORDER( weak_order, operator!=, et::OpNotEqual)
+
+CML_MAT_VEC_ORDER( weak_order, operator<, et::OpLess)
+CML_MATXPR_MAT_ORDER( weak_order, operator<, et::OpLess)
+CML_MAT_MATXPR_ORDER( weak_order, operator<, et::OpLess)
+CML_MATXPR_VECXPR_ORDER( weak_order, operator<, et::OpLess)
+
+CML_MAT_VEC_ORDER( weak_order, operator>, et::OpGreater)
+CML_MATXPR_MAT_ORDER( weak_order, operator>, et::OpGreater)
+CML_MAT_MATXPR_ORDER( weak_order, operator>, et::OpGreater)
+CML_MATXPR_VECXPR_ORDER( weak_order, operator>, et::OpGreater)
+
+CML_MAT_VEC_ORDER( total_order, operator<=, et::OpLessEqual)
+CML_MATXPR_MAT_ORDER( total_order, operator<=, et::OpLessEqual)
+CML_MAT_MATXPR_ORDER( total_order, operator<=, et::OpLessEqual)
+CML_MATXPR_VECXPR_ORDER( total_order, operator<=, et::OpLessEqual)
+
+CML_MAT_VEC_ORDER( total_order, operator>=, et::OpGreaterEqual)
+CML_MATXPR_MAT_ORDER( total_order, operator>=, et::OpGreaterEqual)
+CML_MAT_MATXPR_ORDER( total_order, operator>=, et::OpGreaterEqual)
+CML_MATXPR_VECXPR_ORDER( total_order, operator>=, et::OpGreaterEqual)
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Matrix linear expression classes.
+ *
+ * @todo Dynamic resizing needs to be integrated more naturally into
+ * mul() and matrix transpose():
+ */
+
+#ifndef matrix_expr_h
+#define matrix_expr_h
+
+
+#include <cml/et/size_checking.h>
+#include <cml/matrix/matrix_traits.h>
+#include <cml/matrix/matrix_promotions.h>
+
+/* XXX Don't know which it should be just yet, since RVO seems to obviate the
+ * need for a reference type. However, copy by value copies the *entire
+ * expression tree rooted at the MatrixXpr<>, so this choice is bound to affect
+ * performance for some compiler or another:
+ */
+#define MATXPR_ARG_TYPE const et::MatrixXpr<XprT>&
+#define MATXPR_ARG_TYPE_N(_N_) const et::MatrixXpr<XprT##_N_>&
+
+//#define MATXPR_ARG_TYPE const et::MatrixXpr<XprT>
+//#define MATXPR_ARG_TYPE_N(_N_) const et::MatrixXpr<XprT##_N_>
+
+namespace cml {
+namespace et {
+
+/** A placeholder for a matrix expression in the expression tree. */
+template<class ExprT>
+class MatrixXpr
+{
+ public:
+
+ typedef MatrixXpr<ExprT> expr_type;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename ExprT::value_type value_type;
+ typedef matrix_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag; // Just inherit size type.
+
+ /* Store the expression traits: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Get the reference type: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type: */
+ typedef typename expr_traits::result_type result_type;
+
+ /* Get the basis type: */
+ typedef typename result_type::basis_orient basis_orient;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Record result size as an enum (if applicable). */
+ enum { array_rows = ExprT::array_rows, array_cols = ExprT::array_cols };
+
+
+ public:
+
+ /** Return the expression size as a pair. */
+ matrix_size size() const {
+ return matrix_size(this->rows(),this->cols());
+ }
+
+ /** Return number of rows in the expression (same as subexpression). */
+ size_t rows() const {
+ return expr_traits().rows(m_expr);
+ }
+
+ /** Return number of columns in the expression (same as subexpression). */
+ size_t cols() const {
+ return expr_traits().cols(m_expr);
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+ /** Compute value at index i,j of the result matrix. */
+ value_type operator()(size_t i, size_t j) const {
+ return expr_traits().get(m_expr,i,j);
+ }
+
+ /** Return element j of basis vector i. */
+ value_type basis_element(size_t i, size_t j) const {
+ return basis_element(i,j,basis_orient());
+ }
+
+
+ public:
+
+ /** Construct from the subexpression to store. */
+ explicit MatrixXpr(expr_reference expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ MatrixXpr(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ value_type basis_element(size_t i, size_t j, row_basis) const {
+ return (*this)(i,j);
+ }
+
+ value_type basis_element(size_t i, size_t j, col_basis) const {
+ return (*this)(j,i);
+ }
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits for MatrixXpr<>. */
+template<class ExprT>
+struct ExprTraits< MatrixXpr<ExprT> >
+{
+ typedef MatrixXpr<ExprT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& e, size_t i, size_t j) const {
+ return e(i,j);
+ }
+
+
+ matrix_size size(const expr_type& e) const { return e.size(); }
+ size_t rows(const expr_type& e) const { return e.rows(); }
+ size_t cols(const expr_type& e) const { return e.cols(); }
+};
+
+
+/** A unary matrix expression operating on matrix elements as a list.
+ *
+ * The operator must take exactly one argument.
+ */
+template<class ExprT, class OpT>
+class UnaryMatrixOp
+{
+ public:
+
+ typedef UnaryMatrixOp<ExprT,OpT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename OpT::value_type value_type;
+ typedef matrix_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits for the subexpression: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Reference type for the subexpression: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type: */
+ typedef typename expr_traits::result_type result_type;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Record result size as an enum (if applicable). */
+ enum { array_rows = ExprT::array_rows, array_cols = ExprT::array_cols };
+
+
+ public:
+
+ /** Return the expression size as a pair. */
+ matrix_size size() const {
+ return matrix_size(this->rows(),this->cols());
+ }
+
+ /** Return number of rows in the expression (same as argument). */
+ size_t rows() const {
+ return expr_traits().rows(m_expr);
+ }
+
+ /** Return number of columns in the expression (same as argument). */
+ size_t cols() const {
+ return expr_traits().cols(m_expr);
+ }
+
+ /** Compute value at index i,j of the result matrix. */
+ value_type operator()(size_t i, size_t j) const {
+
+ /* This uses the expression traits to figure out how to access the
+ * i,j'th element of the subexpression:
+ */
+ return OpT().apply(expr_traits().get(m_expr,i,j));
+ }
+
+
+ public:
+
+ /** Construct from the subexpression. */
+ explicit UnaryMatrixOp(expr_reference expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ UnaryMatrixOp(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits for UnaryMatrixOp<>. */
+template<class ExprT, class OpT>
+struct ExprTraits< UnaryMatrixOp<ExprT,OpT> >
+{
+ typedef UnaryMatrixOp<ExprT,OpT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& e, size_t i, size_t j) const {
+ return e(i,j);
+ }
+
+ matrix_size size(const expr_type& e) const { return e.size(); }
+ size_t rows(const expr_type& e) const { return e.rows(); }
+ size_t cols(const expr_type& e) const { return e.cols(); }
+};
+
+
+/** A binary matrix expression. */
+template<class LeftT, class RightT, class OpT>
+class BinaryMatrixOp
+{
+ public:
+
+ typedef BinaryMatrixOp<LeftT,RightT,OpT> expr_type;
+
+ /* Copy the UnaryMatrixOp expression by value into parent
+ * expression tree nodes:
+ */
+ typedef expr_type expr_const_reference;
+
+ typedef typename OpT::value_type value_type;
+ typedef matrix_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Record the expression traits for the two subexpressions: */
+ typedef ExprTraits<LeftT> left_traits;
+ typedef ExprTraits<RightT> right_traits;
+
+ /* Reference types for the two subexpressions: */
+ typedef typename left_traits::const_reference left_reference;
+ typedef typename right_traits::const_reference right_reference;
+
+ /* Figure out the expression's resulting (matrix) type: */
+ typedef typename left_traits::result_type left_result;
+ typedef typename right_traits::result_type right_result;
+ typedef typename MatrixPromote<left_result,right_result>::type result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* Define a size checker: */
+ typedef GetCheckedSize<LeftT,RightT,size_tag> checked_size;
+
+
+ public:
+
+ /** Record result size as an enum (if applicable).
+ *
+ * CheckExprSizes<> ensures that this works as expected.
+ */
+ enum {
+ array_rows = result_type::array_rows,
+ array_cols = result_type::array_cols
+ };
+
+
+ public:
+
+ /** Return the expression size as a pair. */
+ matrix_size size() const {
+ return CheckedSize(m_left,m_right,size_tag());
+ }
+
+ /** Return number of rows in the result.
+ *
+ * @note Because this calls size() internally, calling both rows()
+ * and cols() with CML_CHECK_MATRIX_EXPR_SIZES defined will cause the size
+ * checking code to be executed twice.
+ */
+ size_t rows() const {
+#if defined(CML_CHECK_MATRIX_EXPR_SIZES)
+ return this->size().first;
+#else
+ return left_traits().rows(m_left);
+#endif
+ }
+
+ /** Return number of cols in the result.
+ *
+ * @note Because this calls size() internally, calling both rows()
+ * and cols() with CML_CHECK_MATRIX_EXPR_SIZES defined will cause the size
+ * checking code to be executed twice.
+ */
+ size_t cols() const {
+#if defined(CML_CHECK_MATRIX_EXPR_SIZES)
+ return this->size().second;
+#else
+ return right_traits().cols(m_right);
+#endif
+ }
+
+ /** Compute value at index i,j of the result matrix. */
+ value_type operator()(size_t i, size_t j) const {
+
+ /* This uses the expression traits to figure out how to access the
+ * i'th index of the two subexpressions:
+ */
+ return OpT().apply(
+ left_traits().get(m_left,i,j),
+ right_traits().get(m_right,i,j));
+ }
+
+
+ public:
+
+ /** Construct from the two subexpressions.
+ *
+ * @throws std::invalid_argument if the subexpression sizes don't
+ * match.
+ */
+ explicit BinaryMatrixOp(left_reference left, right_reference right)
+ : m_left(left), m_right(right) {}
+
+ /** Copy constructor. */
+ BinaryMatrixOp(const expr_type& e)
+ : m_left(e.m_left), m_right(e.m_right) {}
+
+
+ protected:
+
+ left_reference m_left;
+ right_reference m_right;
+
+
+ private:
+
+ /* This ensures that a compile-time size check is executed: */
+ typename checked_size::check_type _dummy;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits for BinaryMatrixOp<>. */
+template<class LeftT, class RightT, class OpT>
+struct ExprTraits< BinaryMatrixOp<LeftT,RightT,OpT> >
+{
+ typedef BinaryMatrixOp<LeftT,RightT,OpT> expr_type;
+ typedef LeftT left_type;
+ typedef RightT right_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& e, size_t i, size_t j) const {
+ return e(i,j);
+ }
+
+ matrix_size size(const expr_type& e) const { return e.size(); }
+ size_t rows(const expr_type& e) const { return e.rows(); }
+ size_t cols(const expr_type& e) const { return e.cols(); }
+};
+
+/* Helper struct to verify that both arguments are matrix expressions: */
+template<typename LeftTraits, typename RightTraits>
+struct MatrixExpressions
+{
+ /* Require that both arguments are matrix expressions: */
+ typedef typename LeftTraits::result_tag left_result;
+ typedef typename RightTraits::result_tag right_result;
+ enum { is_true = (same_type<left_result,et::matrix_result_tag>::is_true
+ && same_type<right_result,et::matrix_result_tag>::is_true) };
+};
+
+namespace detail {
+
+/* XXX These are temporary helpers until dynamic resizing is integrated more
+ * naturally into mul() and matrix transpose():
+ */
+template<typename MatT, typename MT> inline
+void Resize(MatT&, size_t, size_t, fixed_size_tag, MT) {}
+
+template<typename MatT> inline
+void Resize(MatT& m,
+ size_t R, size_t C, dynamic_size_tag, dynamic_memory_tag)
+{
+ m.resize(R,C);
+}
+
+template<typename MatT> inline
+void Resize(MatT& m, size_t R, size_t C) {
+ Resize(m, R, C, typename MatT::size_tag(), typename MatT::memory_tag());
+}
+
+template<typename MatT> inline
+void Resize(MatT& m, matrix_size N) {
+ Resize(m, N.first, N.second,
+ typename MatT::size_tag(), typename MatT::memory_tag());
+}
+
+} // namespace detail
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_functions_h
+#define matrix_functions_h
+
+namespace cml {
+
+/** Set the given matrix to the identity matrix.
+ *
+ * This only makes sense for a square matrix, but no error will be
+ * signaled if the matrix is not square.
+ *
+ * @todo This should return a MatrixXpr to allow loop unrolling, as should
+ * the class method.
+ */
+template<typename E, class AT, typename BO, typename L>
+inline matrix<E,AT,BO,L>
+identity(const matrix<E,AT,BO,L>& m)
+{
+ typename matrix<E,AT,BO,L>::temporary_type result;
+
+ /* This is a no-op for fixed-size matrices: */
+ cml::et::detail::Resize(result, m.size());
+ result.identity();
+ return result;
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Multiply two matrices.
+ *
+ * @todo Does it make sense to put mat-mat multiplication as a node into the
+ * expression tree?
+ *
+ * @internal This does not need to return an expression type, since the
+ * temporary generation for the matrix result is handled automatically by the
+ * compiler. i.e. when used in an expression, the result is automatically
+ * included in the expression tree as a temporary by the compiler.
+ */
+
+#ifndef matrix_mul_h
+#define matrix_mul_h
+
+#include <cml/et/size_checking.h>
+#include <cml/matrix/matrix_expr.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * mul is not provided with matrix or MatrixExpr arguments:
+ */
+struct mul_expects_matrix_args_error;
+
+/* This is used below to create a more meaningful compile-time error when
+ * fixed-size arguments to mul() have the wrong size:
+ */
+struct mul_expressions_have_wrong_size_error;
+
+namespace cml {
+namespace detail {
+
+/** Verify the sizes of the argument matrices for matrix multiplication.
+ *
+ * @returns a matrix_size containing the size of the resulting matrix.
+ */
+template<typename LeftT, typename RightT> inline matrix_size
+MatMulCheckedSize(const LeftT&, const RightT&, fixed_size_tag)
+{
+ CML_STATIC_REQUIRE_M(
+ ((size_t)LeftT::array_cols == (size_t)RightT::array_rows),
+ mul_expressions_have_wrong_size_error);
+ return matrix_size(LeftT::array_rows,RightT::array_cols);
+}
+
+/** Verify the sizes of the argument matrices for matrix multiplication.
+ *
+ * @returns a matrix_size containing the size of the resulting matrix.
+ */
+template<typename LeftT, typename RightT> inline matrix_size
+MatMulCheckedSize(const LeftT& left, const RightT& right, dynamic_size_tag)
+{
+ matrix_size left_N = left.size(), right_N = right.size();
+ et::GetCheckedSize<LeftT,RightT,dynamic_size_tag>()
+ .equal_or_fail(left_N.second, right_N.first); /* cols,rows */
+ return matrix_size(left_N.first, right_N.second); /* rows,cols */
+}
+
+
+/** Matrix multiplication.
+ *
+ * Computes C = A x B (O(N^3), non-blocked algorithm).
+ */
+template<class LeftT, class RightT>
+inline typename et::MatrixPromote<
+ typename et::ExprTraits<LeftT>::result_type,
+ typename et::ExprTraits<RightT>::result_type
+>::temporary_type
+mul(const LeftT& left, const RightT& right)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_type left_result;
+ typedef typename right_traits::result_type right_result;
+
+ /* First, require matrix expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::MatrixExpressions<LeftT,RightT>::is_true),
+ mul_expects_matrix_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Deduce size type to ensure that a run-time check is performed if
+ * necessary:
+ */
+ typedef typename et::MatrixPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::type result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* Require that left has the same number of columns as right has rows.
+ * This automatically checks fixed-size matrices at compile time, and
+ * throws at run-time if the sizes don't match:
+ */
+ matrix_size N = detail::MatMulCheckedSize(left, right, size_tag());
+
+ /* Create an array with the right size (resize() is a no-op for
+ * fixed-size matrices):
+ */
+ result_type C;
+ cml::et::detail::Resize(C, N);
+
+ /* XXX Specialize this for fixed-size matrices: */
+ typedef typename result_type::value_type value_type;
+ for(size_t i = 0; i < left.rows(); ++i) { /* rows */
+ for(size_t j = 0; j < right.cols(); ++j) { /* cols */
+ value_type sum(left(i,0)*right(0,j));
+ for(size_t k = 1; k < right.rows(); ++k) {
+ sum += (left(i,k)*right(k,j));
+ }
+ C(i,j) = sum;
+ }
+ }
+
+ return C;
+}
+
+} // namespace detail
+
+
+/** operator*() for two matrices. */
+template<typename E1, class AT1, typename L1,
+ typename E2, class AT2, typename L2,
+ typename BO>
+inline typename et::MatrixPromote<
+ matrix<E1,AT1,BO,L1>, matrix<E2,AT2,BO,L2>
+>::temporary_type
+operator*(const matrix<E1,AT1,BO,L1>& left,
+ const matrix<E2,AT2,BO,L2>& right)
+{
+ return detail::mul(left,right);
+}
+
+/** operator*() for a matrix and a MatrixXpr. */
+template<typename E, class AT, typename BO, typename L, typename XprT>
+inline typename et::MatrixPromote<
+ matrix<E,AT,BO,L>, typename XprT::result_type
+>::temporary_type
+operator*(const matrix<E,AT,BO,L>& left,
+ const et::MatrixXpr<XprT>& right)
+{
+ /* Generate a temporary, and compute the right-hand expression: */
+ typedef typename et::MatrixXpr<XprT>::temporary_type expr_tmp;
+ expr_tmp tmp;
+ cml::et::detail::Resize(tmp,right.rows(),right.cols());
+ tmp = right;
+
+ return detail::mul(left,tmp);
+}
+
+/** operator*() for a MatrixXpr and a matrix. */
+template<typename XprT, typename E, class AT, typename BO, typename L>
+inline typename et::MatrixPromote<
+ typename XprT::result_type , matrix<E,AT,BO,L>
+>::temporary_type
+operator*(const et::MatrixXpr<XprT>& left,
+ const matrix<E,AT,BO,L>& right)
+{
+ /* Generate a temporary, and compute the left-hand expression: */
+ typedef typename et::MatrixXpr<XprT>::temporary_type expr_tmp;
+ expr_tmp tmp;
+ cml::et::detail::Resize(tmp,left.rows(),left.cols());
+ tmp = left;
+
+ return detail::mul(tmp,right);
+}
+
+/** operator*() for two MatrixXpr's. */
+template<typename XprT1, typename XprT2>
+inline typename et::MatrixPromote<
+ typename XprT1::result_type, typename XprT2::result_type
+>::temporary_type
+operator*(const et::MatrixXpr<XprT1>& left,
+ const et::MatrixXpr<XprT2>& right)
+{
+ /* Generate temporaries and compute expressions: */
+ typedef typename et::MatrixXpr<XprT1>::temporary_type left_tmp;
+ left_tmp ltmp;
+ cml::et::detail::Resize(ltmp,left.rows(),left.cols());
+ ltmp = left;
+
+ typedef typename et::MatrixXpr<XprT2>::temporary_type right_tmp;
+ right_tmp rtmp;
+ cml::et::detail::Resize(rtmp,right.rows(),right.cols());
+ rtmp = right;
+
+ return detail::mul(ltmp,rtmp);
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines matrix operators.
+ */
+#ifndef matrix_ops_h
+#define matrix_ops_h
+
+#include <cml/et/scalar_ops.h>
+#include <cml/matrix/matrix_expr.h>
+#include <cml/matrix/matop_macros.h>
+
+namespace cml {
+
+CML_MAT_UNIOP( operator+, et::OpPos)
+CML_MATXPR_UNIOP( operator+, et::OpPos)
+
+CML_MAT_UNIOP( operator-, et::OpNeg)
+CML_MATXPR_UNIOP( operator-, et::OpNeg)
+
+CML_MAT_MAT_BINOP( operator+, et::OpAdd)
+CML_MATXPR_MAT_BINOP( operator+, et::OpAdd)
+CML_MAT_MATXPR_BINOP( operator+, et::OpAdd)
+CML_MATXPR_MATXPR_BINOP( operator+, et::OpAdd)
+
+CML_MAT_MAT_BINOP( operator-, et::OpSub)
+CML_MATXPR_MAT_BINOP( operator-, et::OpSub)
+CML_MAT_MATXPR_BINOP( operator-, et::OpSub)
+CML_MATXPR_MATXPR_BINOP( operator-, et::OpSub)
+
+CML_MAT_SCALAR_BINOP( operator*, et::OpMul)
+CML_SCALAR_MAT_BINOP( operator*, et::OpMul)
+CML_MATXPR_SCALAR_BINOP( operator*, et::OpMul)
+CML_SCALAR_MATXPR_BINOP( operator*, et::OpMul)
+
+CML_MAT_SCALAR_BINOP( operator/, et::OpDiv)
+CML_MATXPR_SCALAR_BINOP( operator/, et::OpDiv)
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_print_h
+#define matrix_print_h
+
+#include <iostream>
+
+namespace cml {
+
+/** Output a matrix to a std::ostream. */
+template<typename E, class AT, typename BO, class L> inline std::ostream&
+operator<<(std::ostream& os, const matrix<E,AT,BO,L>& m)
+{
+ for(size_t i = 0; i < m.rows(); ++i) {
+ os << "[";
+ for(size_t j = 0; j < m.cols(); ++j) {
+ os << " " << m(i,j);
+ }
+ os << " ]";
+ if (i != m.rows()-1) {
+ os << std::endl;
+ }
+ }
+ return os;
+}
+
+/** Output a matrix expression to a std::ostream. */
+template< class XprT > inline std::ostream&
+operator<<(std::ostream& os, const et::MatrixXpr<XprT>& m)
+{
+ for(size_t i = 0; i < m.rows(); ++i) {
+ os << "[";
+ for(size_t j = 0; j < m.cols(); ++j) {
+ os << " " << m(i,j);
+ }
+ os << " ]";
+ if (i != m.rows()-1) {
+ os << std::endl;
+ }
+ }
+ return os;
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Defines promotions for matrices used in matrix/matrix or matrix/scalar
+ * expressions.
+ *
+ * @sa UnaryMat4_TOp
+ * @sa BinaryMat4_TOp
+ */
+
+#ifndef matrix_promotions_h
+#define matrix_promotions_h
+
+#include <cml/core/cml_meta.h>
+#include <cml/et/scalar_promotions.h>
+#include <cml/et/array_promotions.h>
+#include <cml/fixed.h>
+#include <cml/dynamic.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * either argument to OuterPromote has the wrong orientation.
+ */
+struct outer_promote_expects_properly_oriented_args_error;
+
+namespace cml {
+namespace et {
+
+/* Default matrix type promotion template. */
+template<typename LeftT, typename RightT> struct MatrixPromote;
+
+/** Type promotion for two matrix types.
+ *
+ * @note This always uses the basis orientation of the left-hand matrix.
+ * @bug This always uses the basis orientation of the left-hand matrix,
+ * which is not always correct.
+ */
+template<typename E1, class AT1, typename L1, typename BO1,
+ typename E2, class AT2, typename L2, typename BO2>
+struct MatrixPromote< cml::matrix<E1,AT1,BO1,L1>, cml::matrix<E2,AT2,BO2,L2> >
+{
+ /* Promote the arrays: */
+ typedef typename ArrayPromote<
+ typename cml::matrix<E1,AT1,BO1,L1>::array_type,
+ typename cml::matrix<E2,AT2,BO2,L2>::array_type
+ >::type promoted_array;
+
+ /* The deduced matrix result type: */
+ typedef cml::matrix<
+ typename promoted_array::value_type,
+ typename promoted_array::generator_type,
+ BO1,
+ typename promoted_array::layout
+ > type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+/**
+ * NOTE: MatrixPromote* are somewhat ad hoc, and were added to
+ * simplify the code for matrix slerp/squad/etc.
+ */
+
+/** Type promotion for two matrix types. */
+template < class Mat1_T, class Mat2_T >
+struct MatrixPromote2
+{
+ typedef typename MatrixPromote<
+ typename Mat1_T::temporary_type, typename Mat2_T::temporary_type
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+/** Type promotion for three matrix types. */
+template < class Mat1_T, class Mat2_T, class Mat3_T >
+struct MatrixPromote3
+{
+ typedef typename MatrixPromote<
+ typename Mat1_T::temporary_type,
+ typename MatrixPromote<
+ typename Mat2_T::temporary_type, typename Mat3_T::temporary_type
+ >::temporary_type
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+/** Type promotion for four matrix types. */
+template < class Mat1_T, class Mat2_T, class Mat3_T, class Mat4_T >
+struct MatrixPromote4
+{
+ typedef typename MatrixPromote<
+ typename Mat1_T::temporary_type,
+ typename MatrixPromote<
+ typename Mat2_T::temporary_type,
+ typename MatrixPromote<
+ typename Mat3_T::temporary_type,
+ typename Mat4_T::temporary_type
+ >::temporary_type
+ >::temporary_type
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+/** Type promotion for a matrix and a scalar. */
+template<typename E, class AT, typename BO, typename L, typename S>
+struct MatrixPromote<cml::matrix<E,AT,BO,L>, S>
+{
+ /* The deduced matrix result type (the array type is the same): */
+ typedef cml::matrix<typename ScalarPromote<E,S>::type, AT, BO, L> type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+/** Type promotion for a scalar and a matrix. */
+template<typename S, typename E, class AT, typename BO, typename L>
+struct MatrixPromote<S, cml::matrix<E,AT,BO,L> >
+{
+ /* The deduced matrix result type (the array type is the same): */
+ typedef cml::matrix<typename ScalarPromote<S,E>::type, AT, BO, L> type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+/** Type promotion for outer product. */
+template<typename E1, class AT1, typename E2, class AT2>
+struct MatrixPromote< cml::vector<E1,AT1>, cml::vector<E2,AT2> >
+{
+ typedef cml::vector<E1,AT1> left_type;
+ typedef cml::vector<E2,AT2> right_type;
+ typedef CML_DEFAULT_BASIS_ORIENTATION basis_orient;
+
+ /* Get matrix size: */
+ enum {
+ array_rows = left_type::array_size,
+ array_cols = right_type::array_size
+ };
+
+ /* Deduce the corresponding matrix types for the vectors: */
+ typedef CML_DEFAULT_ARRAY_LAYOUT layout;
+ typedef typename select_if<
+ array_rows == -1, dynamic<>, fixed<array_rows,1>
+ >::result left_storage;
+ typedef cml::matrix<E1,left_storage,basis_orient,layout> left_matrix;
+
+ typedef typename select_if<
+ array_cols == -1, dynamic<>, fixed<1,array_cols>
+ >::result right_storage;
+ typedef cml::matrix<E2,right_storage,basis_orient,layout> right_matrix;
+
+ /* Finally, promote the matrix types to get the result: */
+ typedef typename et::MatrixPromote<left_matrix,right_matrix>::type type;
+ typedef typename type::temporary_type temporary_type;
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Expressions to extract a row or column of a matrix.
+ */
+
+#ifndef matrix_rowcol_h
+#define matrix_rowcol_h
+
+#include <cml/vector/vector_expr.h>
+#include <cml/matrix/matrix_expr.h>
+
+namespace cml {
+namespace et {
+
+template<class ExprT>
+class MatrixRowOp
+{
+ public:
+
+ typedef MatrixRowOp<ExprT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename ExprT::value_type value_type;
+ typedef vector_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Get the reference type: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result vector type: */
+ typedef typename expr_traits::result_type::row_vector_type result_type;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = result_type::array_size };
+
+
+ public:
+
+ /** Return the expression size as a pair. */
+ matrix_size size() const {
+ return expr_traits().rows(m_expr);
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+ /** Compute value at index i of the row vector. */
+ value_type operator[](size_t i) const {
+ return expr_traits().get(m_expr,m_row,i);
+ }
+
+
+ public:
+
+ /** Construct from the subexpression to store. */
+ explicit MatrixRowOp(const ExprT& expr, size_t row)
+ : m_expr(expr), m_row(row) {}
+
+ /** Copy constructor. */
+ MatrixRowOp(const expr_type& e)
+ : m_expr(e.m_expr), m_row(e.m_row) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+ const size_t m_row;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for MatrixRowOp<>. */
+template<class ExprT>
+struct ExprTraits< MatrixRowOp<ExprT> >
+{
+ typedef MatrixRowOp<ExprT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+template<class ExprT>
+class MatrixColOp
+{
+ public:
+
+ typedef MatrixColOp<ExprT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename ExprT::value_type value_type;
+ typedef vector_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Get the reference type: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result vector type: */
+ typedef typename expr_traits::result_type::col_vector_type result_type;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = result_type::array_size };
+
+
+ public:
+
+ /** Return the expression size as a pair. */
+ matrix_size size() const {
+ return expr_traits().cols(m_expr);
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+ /** Compute value at index i of the col vector. */
+ value_type operator[](size_t i) const {
+ return expr_traits().get(m_expr,i,m_col);
+ }
+
+
+ public:
+
+ /** Construct from the subexpression to store. */
+ explicit MatrixColOp(const ExprT& expr, size_t col)
+ : m_expr(expr), m_col(col) {}
+
+ /** Copy constructor. */
+ MatrixColOp(const expr_type& e)
+ : m_expr(e.m_expr), m_col(e.m_col) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+ const size_t m_col;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for MatrixColOp<>. */
+template<class ExprT>
+struct ExprTraits< MatrixColOp<ExprT> >
+{
+ typedef MatrixColOp<ExprT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+} // namespace et
+
+/* Define the row and column operators in the cml namespace: */
+
+/** Matrix row operator taking a matrix operand. */
+template<typename E, class AT, typename BO, typename L>
+et::VectorXpr< et::MatrixRowOp< matrix<E,AT,BO,L> > >
+row(const matrix<E,AT,BO,L>& expr, size_t i)
+{
+ typedef et::MatrixRowOp< matrix<E,AT,BO,L> > ExprT;
+ return et::VectorXpr<ExprT>(ExprT(expr,i));
+}
+
+/** Matrix row operator taking an et::MatrixXpr operand.
+ *
+ * The parse tree is automatically compressed by hoisting the MatrixXpr's
+ * subexpression into the subexpression of the MatrixRowOp.
+ */
+template<class XprT>
+et::VectorXpr< et::MatrixRowOp<XprT> >
+row(const et::MatrixXpr<XprT>& expr, size_t i)
+{
+ typedef et::MatrixRowOp<XprT> ExprT;
+ return et::MatrixXpr<ExprT>(ExprT(expr.expression(),i));
+}
+
+/** Matrix col operator taking a matrix operand. */
+template<typename E, class AT, typename BO, typename L>
+et::VectorXpr< et::MatrixColOp< matrix<E,AT,BO,L> > >
+col(const matrix<E,AT,BO,L>& expr, size_t i)
+{
+ typedef et::MatrixColOp< matrix<E,AT,BO,L> > ExprT;
+ return et::VectorXpr<ExprT>(ExprT(expr,i));
+}
+
+/** Matrix col operator taking an et::MatrixXpr operand.
+ *
+ * The parse tree is automatically compressed by hoisting the MatrixXpr's
+ * subexpression into the subexpression of the MatrixColOp.
+ */
+template<class XprT>
+et::VectorXpr< et::MatrixColOp<XprT> >
+col(const et::MatrixXpr<XprT>& expr, size_t i)
+{
+ typedef et::MatrixColOp<XprT> ExprT;
+ return et::VectorXpr<ExprT>(ExprT(expr.expression(),i));
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef matrix_traits_h
+#define matrix_traits_h
+
+#include <cml/et/traits.h>
+
+namespace cml {
+namespace et {
+
+template<typename E, class AT, typename BO, typename L>
+struct ExprTraits< cml::matrix<E,AT,BO,L> >
+{
+ typedef typename cml::matrix<E,AT,BO,L> expr_type;
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_reference reference;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_type result_type;
+ typedef expr_leaf_tag node_tag;
+
+ value_type get(const expr_type& m, size_t i, size_t j) const {
+ return m(i,j);
+ }
+
+ matrix_size size(const expr_type& e) const { return e.size(); }
+ size_t rows(const expr_type& m) const { return m.rows(); }
+ size_t cols(const expr_type& m) const { return m.cols(); }
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * @todo Currently, the transpose() and T() functions copy the transposed
+ * result into a temporary, and return it to avoid aliasing problems, e.g.
+ * C = transpose(C). By checking for C on the right-hand side, this can
+ * be avoided, but experimentation is needed to determine the impact on
+ * performance. Another option is to use a function to explicitly specify
+ * when a temporary is needed; e.g. C = transpose(temp(C)).
+ */
+
+#ifndef matrix_transpose_h
+#define matrix_transpose_h
+
+#include <cml/matrix/matrix_expr.h>
+
+#define MATRIX_TRANSPOSE_RETURNS_TEMP
+
+namespace cml {
+namespace et {
+
+/** "Transpose" the given matrix expression.
+ *
+ * This does nothing more than change the result type of the expression
+ * into one with the opposite orientation (i.e. row->col, col->row).
+ */
+template<class ExprT>
+class MatrixTransposeOp
+{
+ public:
+
+ typedef MatrixTransposeOp<ExprT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename ExprT::value_type value_type;
+ typedef matrix_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Get the reference type: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Swap the orientation: */
+ typedef typename expr_traits::result_type::transposed_type result_type;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum {
+ array_rows = result_type::array_rows,
+ array_cols = result_type::array_cols
+ };
+
+
+ public:
+
+ /** Return the expression size as a pair. */
+ matrix_size size() const {
+ return matrix_size(this->rows(),this->cols());
+ }
+
+ /** Return result rows.
+ *
+ * The tranpose has the same number of rows as the original has
+ * columns.
+ */
+ size_t rows() const {
+ return expr_traits().cols(m_expr);
+ }
+
+ /** Return result cols.
+ *
+ * The tranpose has the same number of columns as the original has
+ * rows.
+ */
+ size_t cols() const {
+ return expr_traits().rows(m_expr);
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+ /** Compute value at index i of the result matrix.
+ *
+ * Element (i,j) of the transpose is element (j,i) of the original
+ * expression.
+ */
+ value_type operator()(size_t i, size_t j) const {
+ return expr_traits().get(m_expr,j,i);
+ }
+
+
+ public:
+
+ /** Construct from the subexpression to store. */
+ explicit MatrixTransposeOp(const ExprT& expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ MatrixTransposeOp(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for VectorTransposeOp<>. */
+template<class ExprT>
+struct ExprTraits< MatrixTransposeOp<ExprT> >
+{
+ typedef MatrixTransposeOp<ExprT> expr_type;
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& m, size_t i, size_t j) const {
+ return m(i,j);
+ }
+
+ matrix_size size(const expr_type& e) const { return e.size(); }
+ size_t rows(const expr_type& e) const { return e.rows(); }
+ size_t cols(const expr_type& e) const { return e.cols(); }
+};
+
+} // namespace et
+
+
+/* Define the transpose operators in the cml namespace: */
+#if defined(MATRIX_TRANSPOSE_RETURNS_TEMP)
+
+/** Matrix transpose operator taking a matrix operand. */
+template<typename E, class AT, typename BO, typename L>
+typename et::MatrixTransposeOp<
+ matrix<E,AT,BO,L>
+>::temporary_type
+transpose(const matrix<E,AT,BO,L>& expr)
+{
+ /* Record the matrix type: */
+ typedef matrix<E,AT,BO,L> matrix_type;
+
+ /* Record the type of the transpose op: */
+ typedef et::MatrixTransposeOp<matrix_type> Op;
+
+ /* Determine the returned matrix type: */
+ typedef typename et::MatrixTransposeOp<
+ matrix_type
+ >::temporary_type tmp_type;
+
+ /* The expression to use to assign the temporary: */
+ typedef et::MatrixXpr<Op> ExprT;
+
+ /* Create the temporary and return it: */
+ tmp_type tmp;
+ cml::et::detail::Resize(tmp,expr.rows(),expr.cols());
+ tmp = ExprT(Op(expr));
+ return tmp;
+}
+
+/** Matrix transpose operator taking an et::MatrixXpr operand.
+ *
+ * The parse tree is automatically compressed by hoisting the MatrixXpr's
+ * subexpression into the subexpression of the MatrixTransposeOp.
+ */
+template<class XprT>
+typename et::MatrixTransposeOp<
+ XprT
+>::temporary_type
+transpose(MATXPR_ARG_TYPE expr)
+{
+ /* Record the type of the transpose op: */
+ typedef et::MatrixTransposeOp<XprT> Op;
+
+ /* Determine the returned matrix type: */
+ typedef typename et::MatrixTransposeOp<XprT>::temporary_type tmp_type;
+
+ /* The expression to use to assign the temporary: */
+ typedef et::MatrixXpr<Op> ExprT;
+
+ /* Create the temporary and return it: */
+ tmp_type tmp;
+ cml::et::detail::Resize(tmp,expr.rows(),expr.cols());
+ tmp = ExprT(Op(expr.expression()));
+ return tmp;
+}
+
+
+/* For notational convenience: */
+
+/** Matrix transpose operator taking a matrix operand. */
+template<typename E, class AT, typename BO, typename L>
+typename et::MatrixTransposeOp<
+ matrix<E,AT,BO,L>
+>::temporary_type
+T(const matrix<E,AT,BO,L>& expr)
+{
+ return transpose(expr);
+}
+
+/** Matrix transpose operator taking an et::MatrixXpr operand.
+ *
+ * The parse tree is automatically compressed by hoisting the MatrixXpr's
+ * subexpression into the subexpression of the MatrixTransposeOp.
+ */
+template<class XprT>
+typename et::MatrixTransposeOp<
+ XprT
+>::temporary_type
+T(MATXPR_ARG_TYPE expr)
+{
+ return transpose(expr);
+}
+
+#else
+
+/* XXX For this to work correctly, matrix assignment and copy have to be
+ * changed to either use a temporary all the time, or to create a temporary
+ * when the same matrix appears on both sides of an assignment, and a
+ * temporary was not already created on the RHS by the ET code.
+ */
+
+/** Matrix transpose operator taking a matrix operand. */
+template<typename E, class AT, typename BO, typename L>
+et::MatrixXpr< et::MatrixTransposeOp< matrix<E,AT,BO,L> > >
+transpose(const matrix<E,AT,BO,L>& expr)
+{
+ typedef et::MatrixTransposeOp< matrix<E,AT,BO,L> > ExprT;
+ return et::MatrixXpr<ExprT>(ExprT(expr));
+}
+
+/** Matrix transpose operator taking an et::MatrixXpr operand.
+ *
+ * The parse tree is automatically compressed by hoisting the MatrixXpr's
+ * subexpression into the subexpression of the MatrixTransposeOp.
+ */
+template<class XprT>
+et::MatrixXpr< et::MatrixTransposeOp<XprT> >
+transpose(MATXPR_ARG_TYPE expr)
+{
+ typedef et::MatrixTransposeOp<XprT> ExprT;
+ return et::MatrixXpr<ExprT>(ExprT(expr.expression()));
+}
+
+
+/* For notational convenience: */
+
+/** Matrix transpose operator taking a matrix operand. */
+template<typename E, class AT, typename BO, typename L>
+et::MatrixXpr< et::MatrixTransposeOp< matrix<E,AT,BO,L> > >
+T(const matrix<E,AT,BO,L>& expr)
+{
+ return transpose(expr);
+}
+
+/** Matrix transpose operator taking an et::MatrixXpr operand.
+ *
+ * The parse tree is automatically compressed by hoisting the MatrixXpr's
+ * subexpression into the subexpression of the MatrixTransposeOp.
+ */
+template<class XprT>
+et::MatrixXpr< et::MatrixTransposeOp<XprT> >
+T(MATXPR_ARG_TYPE expr)
+{
+ return transpose(expr);
+}
+
+#endif
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * @todo Need to implement unrolling for efficient col-major array access.
+ *
+ * @todo Does it make sense to unroll an assignment if either side of the
+ * assignment has a fixed size, or just when the target matrix is fixed
+ * size?
+ */
+
+#ifndef matrix_unroller_h
+#define matrix_unroller_h
+
+#include <cml/et/traits.h>
+#include <cml/et/size_checking.h>
+#include <cml/et/scalar_ops.h>
+
+#if !defined(CML_2D_UNROLLER) && !defined(CML_NO_2D_UNROLLER)
+#error "The matrix unroller has not been defined."
+#endif
+
+#if defined(CML_2D_UNROLLER) && !defined(CML_MATRIX_UNROLL_LIMIT)
+#error "CML_MATRIX_UNROLL_LIMIT is undefined."
+#endif
+
+namespace cml {
+namespace et {
+namespace detail {
+
+/** Unroll a binary assignment operator on a fixed-size matrix.
+ *
+ * This uses a forward iteration to make better use of the cache.
+ *
+ * @sa cml::matrix
+ * @sa cml::et::OpAssign
+ *
+ * @bug Need to verify that OpT is actually an assignment operator.
+ * @bug The 2D unroller needs to be specified for efficient col-major
+ * access.
+ */
+template<class OpT, typename E, class AT, typename BO, typename L, class SrcT>
+class MatrixAssignmentUnroller
+{
+ protected:
+
+ /* The matrix type being assigned to: */
+ typedef cml::matrix<E,AT,BO,L> matrix_type;
+
+ /* Record traits for the arguments: */
+ typedef ExprTraits<matrix_type> dest_traits;
+ typedef ExprTraits<SrcT> src_traits;
+
+#if defined(CML_2D_UNROLLER)
+
+ /* Forward declare: */
+ template<int R, int C, int LastRow, int LastCol, bool can_unroll>
+ struct Eval;
+
+ /* XXX This needs to be specified for efficient col-major access also! */
+
+ /** Evaluate the binary operator at element R,C. */
+ template<int R, int C, int LastRow, int LastCol>
+ struct Eval<R,C,LastRow,LastCol,true> {
+ void operator()(matrix_type& dest, const SrcT& src) const {
+
+ /* Apply to current R,C: */
+ OpT().apply(dest(R,C), src_traits().get(src,R,C));
+
+ /* Evaluate at R,C+1: */
+ Eval<R,C+1,LastRow,LastCol,true>()(dest,src);
+ }
+ };
+
+ /** Evaluate the binary operator at element R,LastCol. */
+ template<int R, int LastRow, int LastCol>
+ struct Eval<R,LastCol,LastRow,LastCol,true> {
+ void operator()(matrix_type& dest, const SrcT& src) const {
+
+ /* Apply to R,LastCol: */
+ OpT().apply(dest(R,LastCol), src_traits().get(src,R,LastCol));
+
+ /* Evaluate at R+1,0; i.e. move to next row and start the
+ * col iteration from 0:
+ */
+ Eval<R+1,0,LastRow,LastCol,true>()(dest,src);
+ }
+ };
+
+ /** Evaluate the binary operator at element LastRow,C. */
+ template<int C, int LastRow, int LastCol>
+ struct Eval<LastRow,C,LastRow,LastCol,true> {
+ void operator()(matrix_type& dest, const SrcT& src) const {
+
+ /* Apply to LastRow,C: */
+ OpT().apply(dest(LastRow,C), src_traits().get(src,LastRow,C));
+
+ /* Evaluate at LastRow,C+1: */
+ Eval<LastRow,C+1,LastRow,LastCol,true>()(dest,src);
+ }
+ };
+
+ /** Evaluate the binary operator at element LastRow,LastCol. */
+ template<int LastRow, int LastCol>
+ struct Eval<LastRow,LastCol,LastRow,LastCol,true> {
+ void operator()(matrix_type& dest, const SrcT& src) const {
+
+ /* Apply to LastRow,LastCol: */
+ OpT().apply(
+ dest(LastRow,LastCol),
+ src_traits().get(src,LastRow,LastCol));
+ }
+ };
+
+
+ /** Evaluate operators on large matrices using a loop. */
+ template<int R, int C, int LastRow, int LastCol>
+ struct Eval<R,C,LastRow,LastCol,false> {
+ void operator()(matrix_type& dest, const SrcT& src) const {
+ for(size_t i = 0; i <= LastRow; ++i) {
+ for(size_t j = 0; j <= LastCol; ++j) {
+ OpT().apply(dest(i,j), src_traits().get(src,i,j));
+ }
+ }
+ }
+ };
+
+#endif // CML_2D_UNROLLER
+
+#if defined(CML_NO_2D_UNROLLER)
+
+ /** Evaluate the binary operator using a loop. */
+ template<int R, int C, int LastRow, int LastCol> struct Eval {
+ void operator()(matrix_type& dest, const SrcT& src) const {
+ for(size_t i = 0; i <= LastRow; ++i) {
+ for(size_t j = 0; j <= LastCol; ++j) {
+ OpT().apply(dest(i,j), src_traits().get(src,i,j));
+ }
+ }
+ }
+ };
+
+#endif // CML_NO_2D_UNROLLER
+
+
+ public:
+
+ /** Unroll assignment for a fixed-sized matrix. */
+ void operator()(
+ cml::matrix<E,AT,BO,L>& dest, const SrcT& src, cml::fixed_size_tag)
+ {
+ typedef cml::matrix<E,AT,BO,L> matrix_type;
+ enum {
+ LastRow = matrix_type::array_rows-1,
+ LastCol = matrix_type::array_cols-1,
+ Max = (LastRow+1)*(LastCol+1)
+ };
+
+#if defined(CML_2D_UNROLLER)
+ typedef typename MatrixAssignmentUnroller<OpT,E,AT,BO,L,SrcT>
+ ::template Eval<0, 0, LastRow, LastCol,
+ (Max <= CML_MATRIX_UNROLL_LIMIT)> Unroller;
+#endif
+
+#if defined(CML_NO_2D_UNROLLER)
+ /* Use a loop: */
+ typedef typename MatrixAssignmentUnroller<OpT,E,AT,BO,L,SrcT>
+ ::template Eval<0, 0, LastRow, LastCol> Unroller;
+#endif
+
+ /* Use a run-time check if src is a run-time sized expression: */
+ typedef typename ExprTraits<SrcT>::size_tag src_size;
+ typedef typename select_if<
+ same_type<src_size,dynamic_size_tag>::is_true,
+ dynamic_size_tag, fixed_size_tag>::result size_tag;
+
+ /* Check the expression size (the returned size isn't needed): */
+ CheckedSize(dest,src,size_tag());
+ /* Note: for two fixed-size expressions, the if-statements and
+ * comparisons should be completely eliminated as dead code. If
+ * src is a dynamic-sized expression, the check will still happen.
+ */
+
+ Unroller()(dest,src);
+ }
+
+
+ private:
+ /* XXX Blah, a temp. hack to fix the auto-resizing stuff below. */
+ matrix_size hack_actual_size(const SrcT& /*src*/, scalar_result_tag) {
+ return matrix_size(1,1);
+ }
+
+ matrix_size hack_actual_size(const SrcT& src, matrix_result_tag) {
+ typedef ExprTraits<SrcT> src_traits;
+ return src_traits().size(src);
+ }
+
+ matrix_size CheckOrResize(
+ matrix_type& dest, const SrcT& src, cml::resizable_tag)
+ {
+#if defined(CML_AUTOMATIC_MATRIX_RESIZE_ON_ASSIGNMENT)
+ /* Get the size of src. This also causes src to check its size: */
+ matrix_size N = hack_actual_size(
+ src, typename src_traits::result_tag());
+
+ /* Set the destination matrix's size: */
+ dest.resize(N.first,N.second);
+#else
+ matrix_size N = CheckedSize(dest,src,dynamic_size_tag());
+#endif
+ return N;
+ }
+
+ matrix_size CheckOrResize(
+ matrix_type& dest, const SrcT& src, cml::not_resizable_tag)
+ {
+ return CheckedSize(dest,src,dynamic_size_tag());
+ }
+ /* XXX Blah, a temp. hack to fix the auto-resizing stuff below. */
+ public:
+
+
+ /** Use a loop for dynamic-sized matrix assignment.
+ *
+ * @note The target matrix must already have the correct size.
+ *
+ * @todo This needs to be specialized for efficient row-major or col-major
+ * layout access.
+ */
+ void operator()(matrix_type& dest, const SrcT& src, cml::dynamic_size_tag)
+ {
+ typedef ExprTraits<SrcT> src_traits;
+ matrix_size N = this->CheckOrResize(
+ dest,src,typename matrix_type::resizing_tag());
+ for(size_t i = 0; i < N.first; ++i) {
+ for(size_t j = 0; j < N.second; ++j) {
+ OpT().apply(dest(i,j), src_traits().get(src,i,j));
+ /* Note: we don't need get(), since dest is a matrix. */
+ }
+ }
+ }
+};
+
+}
+
+/** This constructs an assignment unroller for fixed-size arrays.
+ *
+ * The operator must be an assignment op (otherwise, this doesn't make any
+ * sense). Also, automatic unrolling is only performed for fixed-size
+ * matrices; a loop is used for dynamic-sized matrices.
+ *
+ * @sa cml::matrix
+ * @sa cml::et::OpAssign
+ *
+ * @bug Need to verify that OpT is actually an assignment operator.
+ */
+template<class OpT, class SrcT, typename E, class AT, typename BO, typename L>
+inline void UnrollAssignment(cml::matrix<E,AT,BO,L>& dest, const SrcT& src)
+{
+ /* Record the destination matrix type, and the expression traits: */
+ typedef cml::matrix<E,AT,BO,L> matrix_type;
+
+ /* Record the type of the unroller: */
+ typedef detail::MatrixAssignmentUnroller<OpT,E,AT,BO,L,SrcT> unroller;
+
+ /* Finally, do the unroll call: */
+ unroller()(dest, src, typename matrix_type::size_tag());
+ /* XXX It may make sense to unroll if either side is a fixed size. */
+}
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Multiply a matrix and a vector.
+ *
+ * @todo Implement smarter temporary generation.
+ *
+ * @todo Does it make sense to put mat-vec multiplication as a node into the
+ * expression tree?
+ *
+ * @internal This does not need to return an expression type, since the
+ * temporary generation for the matrix result is handled automatically by the
+ * compiler. i.e. when used in an expression, the result is automatically
+ * included in the expression tree as a temporary by the compiler.
+ */
+
+#ifndef matvec_mul_h
+#define matvec_mul_h
+
+#include <cml/core/cml_meta.h>
+#include <cml/vector/vector_expr.h>
+#include <cml/matrix/matrix_expr.h>
+#include <cml/matvec/matvec_promotions.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * mat-vec mul is not provided with the right arguments:
+ */
+struct mvmul_expects_one_matrix_and_one_vector_arg_error;
+struct mvmul_expects_one_vector_and_one_matrix_arg_error;
+
+namespace cml {
+namespace detail {
+
+/* For choosing the proper multiplication order: */
+typedef true_type mul_Ax;
+typedef false_type mul_xA;
+
+/** Compute y = A*x. */
+template<typename LeftT, typename RightT> inline
+typename et::MatVecPromote<
+ typename et::ExprTraits<LeftT>::result_type,
+ typename et::ExprTraits<RightT>::result_type
+>::temporary_type
+mul(const LeftT& A, const RightT& x, mul_Ax)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_tag left_result;
+ typedef typename right_traits::result_tag right_result;
+
+ /* mul()[A*x] requires a matrix and a vector expression: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<left_result, et::matrix_result_tag>::is_true
+ && same_type<right_result, et::vector_result_tag>::is_true),
+ mvmul_expects_one_matrix_and_one_vector_arg_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Get result type: */
+ typedef typename et::MatVecPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::temporary_type result_type;
+
+ /* Record size type: */
+ typedef typename result_type::size_tag size_tag;
+
+ /* Check the size: */
+ size_t N = et::CheckedSize(A, x, size_tag());
+
+ /* Initialize the new vector: */
+ result_type y; cml::et::detail::Resize(y, N);
+
+ /* Compute y = A*x: */
+ typedef typename result_type::value_type sum_type;
+ for(size_t i = 0; i < N; ++i) {
+ /* XXX This should be unrolled. */
+ sum_type sum(A(i,0)*x[0]);
+ for(size_t k = 1; k < x.size(); ++k) {
+ sum += (A(i,k)*x[k]);
+ }
+ y[i] = sum;
+ }
+
+ return y;
+}
+
+/** Compute y = x*A. */
+template<typename LeftT, typename RightT> inline
+typename et::MatVecPromote<
+ typename et::ExprTraits<LeftT>::result_type,
+ typename et::ExprTraits<RightT>::result_type
+>::temporary_type
+mul(const LeftT& x, const RightT& A, mul_xA)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_tag left_result;
+ typedef typename right_traits::result_tag right_result;
+
+ /* mul()[x*A] requires a vector and a matrix expression: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<left_result, et::vector_result_tag>::is_true
+ && same_type<right_result, et::matrix_result_tag>::is_true),
+ mvmul_expects_one_vector_and_one_matrix_arg_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Get result type: */
+ typedef typename et::MatVecPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::temporary_type result_type;
+
+ /* Record size type: */
+ typedef typename result_type::size_tag size_tag;
+
+ /* Check the size: */
+ size_t N = et::CheckedSize(x, A, size_tag());
+
+ /* Initialize the new vector: */
+ result_type y; cml::et::detail::Resize(y, N);
+
+ /* Compute y = x*A: */
+ typedef typename result_type::value_type sum_type;
+ for(size_t i = 0; i < N; ++i) {
+ /* XXX This should be unrolled. */
+ sum_type sum(x[0]*A(0,i));
+ for(size_t k = 1; k < x.size(); ++k) {
+ sum += (x[k]*A(k,i));
+ }
+ y[i] = sum;
+ }
+
+ return y;
+}
+
+} // namespace detail
+
+
+/** operator*() for a matrix and a vector. */
+template<typename E1, class AT1, typename BO, class L,
+ typename E2, class AT2>
+inline typename et::MatVecPromote<
+ matrix<E1,AT1,BO,L>, vector<E2,AT2>
+>::temporary_type
+operator*(const matrix<E1,AT1,BO,L>& left,
+ const vector<E2,AT2>& right)
+{
+ return detail::mul(left,right,detail::mul_Ax());
+}
+
+/** operator*() for a matrix and a VectorXpr. */
+template<typename E, class AT, class L, typename BO, typename XprT>
+inline typename et::MatVecPromote<
+ matrix<E,AT,BO,L>, typename XprT::result_type
+>::temporary_type
+operator*(const matrix<E,AT,BO,L>& left,
+ const et::VectorXpr<XprT>& right)
+{
+ /* Generate a temporary, and compute the right-hand expression: */
+ typename et::VectorXpr<XprT>::temporary_type right_tmp;
+ cml::et::detail::Resize(right_tmp,right.size());
+ right_tmp = right;
+
+ return detail::mul(left,right_tmp,detail::mul_Ax());
+}
+
+/** operator*() for a MatrixXpr and a vector. */
+template<typename XprT, typename E, class AT>
+inline typename et::MatVecPromote<
+ typename XprT::result_type, vector<E,AT>
+>::temporary_type
+operator*(const et::MatrixXpr<XprT>& left,
+ const vector<E,AT>& right)
+{
+ /* Generate a temporary, and compute the left-hand expression: */
+ typename et::MatrixXpr<XprT>::temporary_type left_tmp;
+ cml::et::detail::Resize(left_tmp,left.rows(),left.cols());
+ left_tmp = left;
+
+ return detail::mul(left_tmp,right,detail::mul_Ax());
+}
+
+/** operator*() for a MatrixXpr and a VectorXpr. */
+template<typename XprT1, typename XprT2>
+inline typename et::MatVecPromote<
+ typename XprT1::result_type, typename XprT2::result_type
+>::temporary_type
+operator*(const et::MatrixXpr<XprT1>& left,
+ const et::VectorXpr<XprT2>& right)
+{
+ /* Generate a temporary, and compute the left-hand expression: */
+ typename et::MatrixXpr<XprT1>::temporary_type left_tmp;
+ cml::et::detail::Resize(left_tmp,left.rows(),left.cols());
+ left_tmp = left;
+
+ /* Generate a temporary, and compute the right-hand expression: */
+ typename et::VectorXpr<XprT2>::temporary_type right_tmp;
+ cml::et::detail::Resize(right_tmp,right.size());
+ right_tmp = right;
+
+ return detail::mul(left_tmp,right_tmp,detail::mul_Ax());
+}
+
+/** operator*() for a vector and a matrix. */
+template<typename E1, class AT1, typename E2, class AT2, typename BO, class L>
+inline typename et::MatVecPromote<
+ vector<E1,AT1>, matrix<E2,AT2,BO,L>
+>::temporary_type
+operator*(const vector<E1,AT1>& left,
+ const matrix<E2,AT2,BO,L>& right)
+{
+ return detail::mul(left,right,detail::mul_xA());
+}
+
+/** operator*() for a vector and a MatrixXpr. */
+template<typename XprT, typename E, class AT>
+inline typename et::MatVecPromote<
+ typename XprT::result_type, vector<E,AT>
+>::temporary_type
+operator*(const vector<E,AT>& left,
+ const et::MatrixXpr<XprT>& right)
+{
+ /* Generate a temporary, and compute the right-hand expression: */
+ typename et::MatrixXpr<XprT>::temporary_type right_tmp;
+ cml::et::detail::Resize(right_tmp,right.rows(),right.cols());
+ right_tmp = right;
+
+ return detail::mul(left,right_tmp,detail::mul_xA());
+}
+
+/** operator*() for a VectorXpr and a matrix. */
+template<typename XprT, typename E, class AT, typename BO, class L>
+inline typename et::MatVecPromote<
+ typename XprT::result_type, matrix<E,AT,BO,L>
+>::temporary_type
+operator*(const et::VectorXpr<XprT>& left,
+ const matrix<E,AT,BO,L>& right)
+{
+ /* Generate a temporary, and compute the left-hand expression: */
+ typename et::VectorXpr<XprT>::temporary_type left_tmp;
+ cml::et::detail::Resize(left_tmp,left.size());
+ left_tmp = left;
+
+ return detail::mul(left_tmp,right,detail::mul_xA());
+}
+
+/** operator*() for a VectorXpr and a MatrixXpr. */
+template<typename XprT1, typename XprT2>
+inline typename et::MatVecPromote<
+ typename XprT1::result_type, typename XprT2::result_type
+>::temporary_type
+operator*(const et::VectorXpr<XprT1>& left,
+ const et::MatrixXpr<XprT2>& right)
+{
+ /* Generate a temporary, and compute the left-hand expression: */
+ typename et::VectorXpr<XprT1>::temporary_type left_tmp;
+ cml::et::detail::Resize(left_tmp,left.size());
+ left_tmp = left;
+
+ /* Generate a temporary, and compute the right-hand expression: */
+ typename et::MatrixXpr<XprT2>::temporary_type right_tmp;
+ cml::et::detail::Resize(right_tmp,right.rows(),right.cols());
+ right_tmp = right;
+
+ return detail::mul(left_tmp,right_tmp,detail::mul_xA());
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Defines promotions for the vectors resulting from matrix/vector or
+ * vector/matrix ops.
+ *
+ * @sa matvec_ops::mvmul
+ */
+
+#ifndef matvec_promotions_h
+#define matvec_promotions_h
+
+#include <cml/et/scalar_promotions.h>
+#include <cml/vector/vector_promotions.h>
+
+namespace cml {
+namespace et {
+
+/* Default mat/vec type promotion template. */
+template<typename LeftT, typename RightT> struct MatVecPromote;
+
+/** Type promotion for a matrix and a vector. */
+template<
+ typename E1, class AT1, typename BO, typename L,
+ typename E2, class AT2>
+struct MatVecPromote< cml::matrix<E1,AT1,BO,L>, cml::vector<E2,AT2> >
+{
+ typedef cml::matrix<E1,AT1,BO,L> matrix_type;
+ typedef cml::vector<E2,AT2> vector_type;
+
+ /* Promote the arrays: */
+ typedef typename ArrayPromote<
+ typename matrix_type::array_type,
+ typename vector_type::array_type
+ >::type promoted_array;
+
+ /* The deduced vector result type: */
+ typedef cml::vector<
+ typename promoted_array::value_type,
+ typename promoted_array::generator_type
+ > type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+ /* Note: this is to avoid an "incomplete type" error from ICC9, which
+ * can't handle e.g. <X>::<Y>::<Z> when <X> is a template type.
+ */
+};
+
+/** Type promotion for a vector and a matrix. */
+template<
+ typename E1, class AT1,
+ typename E2, class AT2, typename BO, typename L>
+struct MatVecPromote< cml::vector<E1,AT1>, cml::matrix<E2,AT2,BO,L> >
+{
+ typedef cml::vector<E1,AT1> vector_type;
+ typedef cml::matrix<E2,AT2,BO,L> matrix_type;
+
+ /* Promote the arrays: */
+ typedef typename ArrayPromote<
+ typename vector_type::array_type,
+ typename matrix_type::array_type
+ >::type promoted_array;
+
+ /* The deduced vector result type: */
+ typedef cml::vector<
+ typename promoted_array::value_type,
+ typename promoted_array::generator_type
+ > type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+ /* Note: this is to avoid an "incomplete type" error from ICC9, which
+ * can't handle e.g. <X>::<Y>::<Z> when <X> is a template type.
+ */
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef cml_quaternion_h
+#define cml_quaternion_h
+
+#include <cml/core/common.h>
+
+namespace cml {
+
+// NOTE: 'scale' constant no longer used.
+
+/** Helper to specify v1^v2 multiplication order. */
+struct positive_cross {
+ /*enum { scale = 1 };*/
+};
+
+/** Helper to specify v2^v1 multiplication order. */
+struct negative_cross {
+ /*enum { scale = -1 };*/
+};
+
+/** Helper to specify scalar-first quaternion ordering. */
+struct scalar_first {
+ enum { W, X, Y, Z };
+};
+
+/** Helper to specify vector-first quaternion ordering. */
+struct vector_first {
+ enum { X, Y, Z, W };
+};
+
+/** A configurable quaternion.
+ *
+ * This class encapsulates the notion of a quaternion. The ArrayType
+ * template argument can be used to select the type of array to be used as
+ * internal storage for the quaternion's coefficients.
+ *
+ * @note Quaternions with two different orders cannot be used in the same
+ * expression.
+ */
+template<typename Element, class ArrayType = fixed<>,
+ class Order = scalar_first, class Cross = positive_cross> class quaternion;
+
+} // namespace cml
+
+#include <cml/quaternion/quaternion_ops.h>
+#include <cml/quaternion/conjugate.h>
+#include <cml/quaternion/quaternion_mul.h>
+#include <cml/quaternion/quaternion_functions.h>
+#include <cml/quaternion/quaternion_comparison.h>
+#include <cml/quaternion/inverse.h>
+#include <cml/quaternion/quaternion_print.h>
+
+#include <cml/quaternion/quaternion.h>
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines an operator for quaternion conjugation.
+ */
+
+#ifndef conjugate_h
+#define conjugate_h
+
+#include <cml/quaternion/quaternion_expr.h>
+
+namespace cml {
+namespace et {
+
+/** An expression node for conjugating a quaternion. */
+template<class ExprT>
+class ConjugateOp
+{
+ public:
+
+ typedef ConjugateOp<ExprT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename ExprT::value_type value_type;
+ typedef quaternion_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits for the subexpression: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Reference type for the subexpression: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type (same as for subexpression): */
+ typedef typename expr_traits::result_type result_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* Get the vector type: */
+ typedef typename result_type::vector_type vector_type;
+
+ /* Get the imaginary part type: */
+ typedef typename vector_type::subvector_type imaginary_type;
+
+ /* Record the order type: */
+ typedef typename result_type::order_type order_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = ExprT::array_size };
+
+ /** Localize the ordering as an enum. */
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+
+ public:
+
+ /** Return the real part of the expression. */
+ value_type real() const {
+ return m_expr.real();
+ }
+
+ /** Return the vector part of the expression. */
+ imaginary_type imaginary() const {
+ return -m_expr.imaginary();
+ }
+
+ /** Return the Cayley norm of the expression. */
+ value_type norm() const {
+ return length_squared();
+ }
+
+ /** Return square of the quaternion length. */
+ value_type length_squared() const {
+ return dot(
+ QuaternionXpr<expr_type>(*this),
+ QuaternionXpr<expr_type>(*this));
+ }
+
+ /** Return the quaternion length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Return the result as a normalized quaternion. */
+ temporary_type normalize() const {
+ temporary_type q(QuaternionXpr<expr_type>(*this));
+ return q.normalize();
+ }
+
+ /** Compute conjugated result at index i.
+ *
+ * The conjugate of quaternion s + v is s - v.
+ */
+ value_type operator[](size_t i) const {
+ return (i == W) ? m_expr[W] : - m_expr[i] ;
+ }
+
+
+ public:
+
+ /** Return size of this expression (same as argument's size). */
+ size_t size() const {
+ return m_expr.size();
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+
+ public:
+
+ /** Construct from the subexpression. */
+ explicit ConjugateOp(expr_reference expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ ConjugateOp(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for ConjugateOp<>. */
+template<class ExprT>
+struct ExprTraits< ConjugateOp<ExprT> >
+{
+ typedef ConjugateOp<ExprT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+} // namespace et
+
+/** Conjugation of a quaternion. */
+template<typename E, class AT, class OT, class CT> inline
+et::QuaternionXpr< et::ConjugateOp< quaternion<E,AT,OT,CT> > >
+conjugate(const quaternion<E,AT,OT,CT>& arg)
+{
+ typedef et::ConjugateOp< quaternion<E,AT,OT,CT> > ExprT;
+ return et::QuaternionXpr<ExprT>(ExprT(arg));
+}
+
+/** Conjugation of a QuaternionXpr. */
+template<class XprT> inline
+et::QuaternionXpr< et::ConjugateOp<XprT> >
+conjugate(QUATXPR_ARG_TYPE arg)
+{
+ typedef et::ConjugateOp<XprT> ExprT;
+ return et::QuaternionXpr<ExprT>(ExprT(arg.expression()));
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines an operator for quaternion inverse.
+ */
+
+#ifndef quaternion_inverse_h
+#define quaternion_inverse_h
+
+#include <cml/quaternion/quaternion_expr.h>
+#include <cml/quaternion/quaternion_functions.h>
+
+namespace cml {
+namespace et {
+
+/** An expression node for inverting a quaternion.
+ *
+ * This internally creates a ConjugateOp node to process the conjugate
+ * of the given expression. The values produced by the ConjugateOp are then
+ * divided by the Cayley norm of the expression on the fly.
+ */
+template<class ExprT>
+class QuaternionInverseOp
+{
+ public:
+
+ typedef QuaternionInverseOp<ExprT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ /* The subexpression is a ConjugateOp: */
+ typedef et::ConjugateOp<ExprT> subexpression_type;
+ typedef ExprTraits<subexpression_type> expr_traits;
+
+ /* Get traits for the ExprT: */
+ typedef ExprTraits<ExprT> arg_traits;
+ typedef typename arg_traits::const_reference arg_reference;
+
+ typedef typename subexpression_type::value_type value_type;
+ typedef quaternion_result_tag result_tag;
+ typedef typename subexpression_type::size_tag size_tag;
+
+ /* Reference type for the subexpression: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type (same as for subexpression): */
+ typedef typename expr_traits::result_type result_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* Get the vector type: */
+ typedef typename result_type::vector_type vector_type;
+
+ /* Get the imaginary part type: */
+ typedef typename vector_type::subvector_type imaginary_type;
+
+ /* Record the order type: */
+ typedef typename result_type::order_type order_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = ExprT::array_size };
+
+ /** Localize the ordering as an enum. */
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+
+ public:
+
+ /** Return the real part of the expression. */
+ value_type real() const {
+ return m_expr.real()/m_norm;
+ }
+
+ /** Return the vector part of the expression.
+ *
+ * @todo This could be returned as a VectorXpr also.
+ */
+ imaginary_type imaginary() const {
+ return m_expr.imaginary()/m_norm;
+ }
+
+ /** Return the Cayley norm of the expression. */
+ value_type norm() const {
+ return length_squared();
+ }
+
+ /** Return square of the quaternion length. */
+ value_type length_squared() const {
+ return dot(
+ QuaternionXpr<expr_type>(*this),
+ QuaternionXpr<expr_type>(*this));
+ }
+
+ /** Return the quaternion length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Return the result as a normalized quaternion. */
+ temporary_type normalize() const {
+ temporary_type q(QuaternionXpr<expr_type>(*this));
+ return q.normalize();
+ }
+
+ /** Compute inverse result at index i.
+ *
+ * The inverse of a quaternion p is ~p/norm(p).
+ */
+ value_type operator[](size_t i) const {
+ return m_expr[i]/m_norm;
+ }
+
+
+ public:
+
+ /** Return size of this expression (same as argument's size). */
+ size_t size() const {
+ return m_expr.size();
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+
+ public:
+
+ /** Construct from an input expression. */
+ explicit QuaternionInverseOp(arg_reference arg)
+ //: m_expr(arg), m_norm(cml::norm(arg)) {}
+ : m_expr(arg), m_norm(arg.norm()) {}
+
+ /** Copy constructor. */
+ QuaternionInverseOp(const expr_type& e)
+ : m_expr(e.m_expr), m_norm(e.m_norm) {}
+
+
+ protected:
+
+ subexpression_type m_expr;
+ value_type m_norm;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for QuaternionInverseOp<>. */
+template<class ExprT>
+struct ExprTraits< QuaternionInverseOp<ExprT> >
+{
+ typedef QuaternionInverseOp<ExprT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+} // namespace et
+
+/** Inverse of a quaternion. */
+template<typename E, class AT, class OrderT, class CrossT> inline
+et::QuaternionXpr< et::QuaternionInverseOp< quaternion<E,AT,OrderT,CrossT> > >
+inverse(const quaternion<E,AT,OrderT,CrossT>& arg)
+{
+ typedef et::QuaternionInverseOp< quaternion<E,AT,OrderT,CrossT> > ExprT;
+ return et::QuaternionXpr<ExprT>(ExprT(arg));
+}
+
+/** Inverse of a QuaternionXpr. */
+template<class XprT> inline
+et::QuaternionXpr< et::QuaternionInverseOp<XprT> >
+inverse(QUATXPR_ARG_TYPE arg)
+{
+ typedef et::QuaternionInverseOp<XprT> ExprT;
+ return et::QuaternionXpr<ExprT>(ExprT(arg.expression()));
+}
+
+/* NOTE: Quaternion division no longer supported, but I'm leaving the
+ code here for reference (Jesse) */
+
+#if 0
+/** Declare div taking two quaternion operands. */
+template<typename E1, class AT1, typename E2, class AT2, class OT, class CT>
+inline typename et::QuaternionPromote<
+ quaternion<E1,AT1,OT,CT>, quaternion<E2,AT2,OT,CT>
+>::temporary_type
+operator/(
+ const quaternion<E1,AT1,OT,CT>& left,
+ const quaternion<E2,AT2,OT,CT>& right)
+{
+ return left*inverse(right);
+}
+
+/** Declare div taking a quaternion and a et::QuaternionXpr. */
+template<typename E, class AT, class OT, class CT, class XprT>
+inline typename et::QuaternionPromote<
+ quaternion<E,AT,OT,CT>, typename XprT::result_type
+>::temporary_type
+operator/(
+ const quaternion<E,AT,OT,CT>& left,
+ QUATXPR_ARG_TYPE right)
+{
+ return left*inverse(right);
+}
+
+/** Declare div taking an et::QuaternionXpr and a quaternion. */
+template<class XprT, typename E, class AT, class OT, class CT>
+inline typename et::QuaternionPromote<
+ typename XprT::result_type, quaternion<E,AT,OT,CT>
+>::temporary_type
+operator/(
+ QUATXPR_ARG_TYPE left,
+ const quaternion<E,AT,OT,CT>& right)
+{
+ return left*inverse(right);
+}
+
+/** Declare div taking two et::QuaternionXpr operands. */
+template<class XprT1, class XprT2>
+inline typename et::QuaternionPromote<
+ typename XprT1::result_type, typename XprT2::result_type
+>::temporary_type
+operator/(
+ QUATXPR_ARG_TYPE_N(1) left,
+ QUATXPR_ARG_TYPE_N(2) right)
+{
+ return left*inverse(right);
+}
+#endif
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * @todo Return a VectorXpr adaptor from the imaginary() method of
+ * quaternion and the expression node types.
+ *
+ * @todo swap multiplication order based upon template param
+ *
+ * @todo change element order based upon template param
+ */
+
+#ifndef quaternion_h
+#define quaternion_h
+
+#include <cml/mathlib/epsilon.h>
+#include <cml/quaternion/quaternion_expr.h>
+#include <cml/quaternion/quaternion_dot.h>
+#include <cml/util.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * the quaternion class is not created with a fixed-size 4-vector:
+ */
+struct quaternion_requires_fixed_size_array_type_error;
+
+namespace cml {
+
+/** A configurable quaternion type.
+ *
+ * @note Quaternions with two different orders cannot be used in the same
+ * expression.
+ */
+template<
+ typename Element,
+ class ArrayType,
+ class Order,
+ class Cross
+>
+class quaternion
+{
+ /* The ArrayType must be fixed<> or external<>: */
+ CML_STATIC_REQUIRE_M(
+ (same_type< ArrayType, fixed<> >::is_true
+ || same_type< ArrayType, external<> >::is_true),
+ quaternion_requires_fixed_size_array_type_error);
+
+ public:
+
+ /* Shorthand for the array type generator: */
+ typedef ArrayType storage_type;
+ typedef typename ArrayType::template rebind<4>::other generator_type;
+
+ /* Vector representing the quaternion. Use the rebinding template to
+ * set the vector size:
+ */
+ typedef vector<Element, generator_type> vector_type;
+
+ /* Vector temporary type: */
+ typedef typename vector_type::temporary_type vector_temporary;
+
+ /* Quaternion order: */
+ typedef Order order_type;
+
+ /* Quaternion multiplication order: */
+ typedef Cross cross_type;
+
+ /* Scalar type representing the scalar part: */
+ typedef typename vector_type::value_type value_type;
+ typedef typename vector_type::reference reference;
+ typedef typename vector_type::const_reference const_reference;
+ /* XXX Need to verify that this is a true scalar type. */
+
+ /* The quaternion type: */
+ typedef quaternion<Element,storage_type,order_type,cross_type>
+ quaternion_type;
+
+ /* For integration into the expression template code: */
+ typedef quaternion_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef quaternion<
+ Element, typename vector_temporary::storage_type,
+ order_type, cross_type> temporary_type;
+
+ /* For integration into the expression templates code: */
+ typedef quaternion_type& expr_reference;
+ typedef const quaternion_type& expr_const_reference;
+
+ /* For matching by storage type: */
+ typedef typename vector_type::memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef typename vector_type::size_tag size_tag;
+
+ /* Get the imaginary part type: */
+ typedef typename vector_temporary::subvector_type imaginary_type;
+
+ /* For matching by result-type: */
+ typedef cml::et::quaternion_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = 4 };
+
+ /** Localize the ordering as an enum. */
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+
+ public:
+
+ /** Return the scalar part. */
+ value_type real() const { return m_q[W]; }
+
+ /** Return the imaginary vector. */
+ imaginary_type imaginary() const {
+ /*
+ imaginary_type v;
+ v[0] = m_q[X]; v[1] = m_q[Y]; v[2] = m_q[Z];
+ return v;
+ */
+ return imaginary_type(m_q[X], m_q[Y], m_q[Z]);
+ }
+
+ /** Return the vector representing the quaternion. */
+ const vector_type& as_vector() const {
+ return m_q;
+ }
+
+ /** Return the Cayley norm of the quaternion. */
+ value_type norm() const {
+ return length_squared();
+ }
+
+ /** Return square of the quaternion length. */
+ value_type length_squared() const {
+ return cml::dot(*this,*this);
+ }
+
+ /** Return the quaternion length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Normalize this quaternion (divide by its length).
+ *
+ * @todo Make this return a QuaternionXpr.
+ */
+ quaternion_type& normalize() {
+ return (*this /= length());
+ }
+
+ /** Set this quaternion to the conjugate. */
+ quaternion_type& conjugate() {
+ return (*this) = cml::conjugate(*this);
+ }
+
+ /** Set this quaternion to the inverse. */
+ quaternion_type& inverse() {
+ return (*this) = cml::inverse(*this);
+ }
+
+ /** Set this quaternion to the multiplicative identity. */
+ quaternion_type& identity() {
+ m_q[W] = value_type(1);
+ m_q[X] = value_type(0);
+ m_q[Y] = value_type(0);
+ m_q[Z] = value_type(0);
+ return *this;
+ }
+
+ /** Return the log of this quaternion. */
+ temporary_type log(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ value_type a = acos_safe(real());
+ value_type s = std::sin(a);
+
+ if (s > tolerance) {
+ return temporary_type(value_type(0), imaginary() * (a / s));
+ } else {
+ return temporary_type(value_type(0), imaginary());
+ }
+ }
+
+ /**
+ * Return the result of the exponential function as applied to
+ * this quaternion.
+ */
+ temporary_type exp(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ imaginary_type v = imaginary();
+ value_type a = cml::length(v);
+
+ if (a > tolerance) {
+ return temporary_type(std::cos(a), v * (std::sin(a) / a));
+ } else {
+ return temporary_type(std::cos(a), v);
+ }
+ }
+
+
+ /** Const access to the quaternion as a vector. */
+ const_reference operator[](size_t i) const { return m_q[i]; }
+
+ /** Mutable access to the quaternion as a vector. */
+ reference operator[](size_t i) { return m_q[i]; }
+
+ /** Fill quaternion with random elements.
+ *
+ * @warning This does not generate uniformly random rotations.
+ */
+ void random(value_type min, value_type max) {
+ for (size_t i = 0; i < 4; ++i) {
+ m_q[i] = random_real(min,max);
+ }
+ }
+
+ public:
+
+ /** Default initializer.
+ *
+ * @note The default constructor cannot be used with an external<>
+ * array type.
+ */
+ quaternion() {}
+
+ /** Initializer for an external<> vector type. */
+ quaternion(Element* const array) : m_q(array) {}
+
+ /** Copy construct from the same type of quaternion. */
+ quaternion(const quaternion_type& q) : m_q(q.m_q) {}
+
+ /** Construct from a quaternion having a different array type. */
+ template<typename E, class AT> quaternion(
+ const quaternion<E,AT,order_type,cross_type>& q)
+ : m_q(q.as_vector()) {}
+
+ /** Copy construct from a QuaternionXpr. */
+ template<typename XprT> quaternion(QUATXPR_ARG_TYPE e) {
+ typedef typename XprT::order_type arg_order;
+ m_q[W] = e[arg_order::W];
+ m_q[X] = e[arg_order::X];
+ m_q[Y] = e[arg_order::Y];
+ m_q[Z] = e[arg_order::Z];
+ }
+
+
+
+ /** Initialize from a 4-vector.
+ *
+ * If Order is scalar_first, then v[0] is the real part. Otherwise,
+ * v[3] is the real part.
+ */
+ quaternion(const vector_type& v) : m_q(v) {}
+
+ /** Initialize from an array of scalars.
+ *
+ * If Order is scalar_first, then v[0] is the real part. Otherwise,
+ * v[3] is the real part.
+ *
+ * @note The target vector must have CML_VEC_COPY_FROM_ARRAY
+ * implemented, so this cannot be used with external<> vectors.
+ */
+ quaternion(const value_type v[4]) : m_q(v) {}
+
+ /** Initialize from 4 scalars.
+ *
+ * If Order is scalar_first, then a is the real part, and (b,c,d) is
+ * the imaginary part. Otherwise, (a,b,c) is the imaginary part, and d
+ * is the real part.
+ */
+ quaternion(
+ const value_type& a, const value_type& b,
+ const value_type& c, const value_type& d)
+ {
+ /* Call the overloaded assignment function: */
+ assign(a, b, c, d, Order());
+ }
+
+ /** Initialize both the real and imaginary parts.
+ *
+ * The imaginary part is given by a 3-vector. Although the imaginary
+ * part is specified first, the proper coefficient order (vector or
+ * scalar first) is maintained.
+ */
+ quaternion(const value_type& s, const imaginary_type& v) {
+ m_q[W] = s; m_q[X] = v[0]; m_q[Y] = v[1]; m_q[Z] = v[2];
+ }
+
+ /** Initialize both the real and imaginary parts.
+ *
+ * The imaginary part is given by a 3-vector. Although the imaginary
+ * part is specified second, the proper coefficient order (vector or
+ * scalar first) is maintained.
+ */
+ quaternion(const imaginary_type& v, const value_type& s) {
+ m_q[W] = s; m_q[X] = v[0]; m_q[Y] = v[1]; m_q[Z] = v[2];
+ }
+
+ /** Initialize both the real and imaginary parts.
+ *
+ * The imaginary part is given by an array of scalars. Although the
+ * imaginary part is specified first, the proper coefficient order
+ * (vector or scalar first) is maintained.
+ */
+ quaternion(const value_type v[3], const value_type& s) {
+ m_q[W] = s; m_q[X] = v[0]; m_q[Y] = v[1]; m_q[Z] = v[2];
+ }
+
+ /** Initialize both the real and imaginary parts.
+ *
+ * The imaginary part is given by an array of scalars. Although the
+ * imaginary part is specified second, the proper coefficient order
+ * (vector or scalar first) is maintained.
+ */
+ quaternion(const value_type& s, const value_type v[3]) {
+ m_q[W] = s; m_q[X] = v[0]; m_q[Y] = v[1]; m_q[Z] = v[2];
+ }
+
+
+
+ /** Initialize from a VectorXpr. */
+ template<typename XprT>
+ quaternion(VECXPR_ARG_TYPE e) : m_q(e) {}
+
+ /** Initialize both the real and imaginary parts.
+ *
+ * The imaginary part is initialized with a VectorXpr.
+ */
+ template<typename XprT>
+ quaternion(const value_type& s, VECXPR_ARG_TYPE e) {
+ m_q[W] = s; m_q[X] = e[0]; m_q[Y] = e[1]; m_q[Z] = e[2];
+ }
+
+ // @todo: Are we missing:
+
+ // quaternion(VECXPR_ARG_TYPE e, const value_type& s) {}
+
+ // Or is that covered elsewhere?
+
+ /** In-place op from a quaternion.
+ *
+ * This assumes that _op_ is defined for both the quaternion's vector
+ * type and its scalar type.
+ */
+#define CML_QUAT_ASSIGN_FROM_QUAT(_op_) \
+ template<typename E, class AT> const quaternion_type& \
+ operator _op_ (const quaternion<E,AT,order_type,cross_type>& q) { \
+ m_q[W] _op_ q[W]; \
+ m_q[X] _op_ q[X]; \
+ m_q[Y] _op_ q[Y]; \
+ m_q[Z] _op_ q[Z]; \
+ return *this; \
+ }
+
+ /** In-place op from a QuaternionXpr.
+ *
+ * This assumes that _op_ is defined for the quaternion's scalar type.
+ */
+#define CML_QUAT_ASSIGN_FROM_QUATXPR(_op_) \
+ template<typename XprT> quaternion_type& \
+ operator _op_ (QUATXPR_ARG_TYPE e) { \
+ typedef typename XprT::order_type arg_order; \
+ m_q[W] _op_ e[arg_order::W]; \
+ m_q[X] _op_ e[arg_order::X]; \
+ m_q[Y] _op_ e[arg_order::Y]; \
+ m_q[Z] _op_ e[arg_order::Z]; \
+ return *this; \
+ }
+
+ /** In-place op from a scalar type.
+ *
+ * This assumes that _op_ is defined for the quaternion's scalar type.
+ */
+#define CML_QUAT_ASSIGN_FROM_SCALAR(_op_,_op_name_) \
+ quaternion_type& operator _op_ (const value_type& s) { \
+ typedef _op_name_ <value_type,value_type> OpT; \
+ OpT().apply(m_q[W],s); \
+ OpT().apply(m_q[X],s); \
+ OpT().apply(m_q[Y],s); \
+ OpT().apply(m_q[Z],s); \
+ return *this; \
+ }
+
+ CML_QUAT_ASSIGN_FROM_QUAT(=)
+ CML_QUAT_ASSIGN_FROM_QUAT(+=)
+ CML_QUAT_ASSIGN_FROM_QUAT(-=)
+
+ CML_QUAT_ASSIGN_FROM_QUATXPR(=)
+ CML_QUAT_ASSIGN_FROM_QUATXPR(+=)
+ CML_QUAT_ASSIGN_FROM_QUATXPR(-=)
+
+ CML_QUAT_ASSIGN_FROM_SCALAR(*=, cml::et::OpMulAssign)
+ CML_QUAT_ASSIGN_FROM_SCALAR(/=, cml::et::OpDivAssign)
+
+#undef CML_QUAT_ASSIGN_FROM_QUAT
+#undef CML_QUAT_ASSIGN_FROM_QUATXPR
+#undef CML_QUAT_ASSIGN_FROM_SCALAR
+
+ /** Accumulated multiplication with a quaternion.
+ *
+ * Compute p = p * q for two quaternions p and q.
+ *
+ * @internal Using operator* here is okay, as long as cml/quaternion.h
+ * is included before using this method (the only supported case for
+ * end-user code). This is because modern compilers won't instantiate a
+ * method in a template class until it is used, and including the main
+ * header ensures all definitions are available before any possible use
+ * of this method.
+ */
+ quaternion_type& operator*=(const quaternion_type& q) {
+ return (*this = *this * q);
+ }
+
+ /** Accumulated multiplication with a quaternion expression.
+ *
+ * Compute p = p * e for a quaternion p and a quaternion expression e.
+ *
+ * @internal Using operator* here is okay, as long as cml/quaternion.h
+ * is included before using this method (the only supported case for
+ * end-user code). This is because modern compilers won't instantiate a
+ * method in a template class until it is used, and including the main
+ * header ensures all definitions are available before any possible use
+ * of this method.
+ */
+ template<typename XprT> quaternion_type& operator*=(QUATXPR_ARG_TYPE e) {
+ return (*this = *this * e);
+ }
+
+ /* NOTE: Quaternion division no longer supported, but I'm leaving the
+ code here for reference (Jesse) */
+
+ #if 0
+ /** Accumulated division with a quaternion.
+ *
+ * Compute p = p * inverse(q).
+ *
+ * @note Because quaternion multiplication is non-commutative, division
+ * is ambiguous. This method assumes a multiplication order consistent
+ * with the notational order; i.e. p = q / r means p = q*inverse(r).
+ *
+ * @internal Using operator* and cml::inverse here is okay, as long as
+ * cml/quaternion.h is included before using this method (the only
+ * supported case for end-user code). This is because modern compilers
+ * won't instantiate a method in a template class until it is used, and
+ * including the main header ensures all definitions are available
+ * before any possible use of this method.
+ */
+ quaternion_type& operator/=(const quaternion_type& q) {
+ return (*this = *this * cml::inverse(q));
+ }
+
+ /** Accumulated division with a quaternion expression.
+ *
+ * Compute p = p * inverse(q).
+ *
+ * @note Because quaternion multiplication is non-commutative, division
+ * is ambiguous. This method assumes a multiplication order consistent
+ * with the notational order; i.e. p = q / r means p = q*inverse(r).
+ *
+ * @internal Using operator* and cml::inverse here is okay, as long as
+ * cml/quaternion.h is included before using this method (the only
+ * supported case for end-user code). This is because modern compilers
+ * won't instantiate a method in a template class until it is used, and
+ * including the main header ensures all definitions are available
+ * before any possible use of this method.
+ */
+ template<typename XprT> quaternion_type& operator/=(QUATXPR_ARG_TYPE e) {
+ return (*this = *this * cml::inverse(e));
+ }
+ #endif
+
+
+ protected:
+
+ /** Overloaded function to assign the quaternion from 4 scalars. */
+ void assign(const value_type& a, const value_type& b,
+ const value_type& c, const value_type& d, scalar_first)
+ {
+ m_q[W] = a; m_q[X] = b; m_q[Y] = c; m_q[Z] = d;
+ }
+
+ /** Overloaded function to assign the quaternion from 4 scalars. */
+ void assign(const value_type& a, const value_type& b,
+ const value_type& c, const value_type& d, vector_first)
+ {
+ m_q[X] = a; m_q[Y] = b; m_q[Z] = c; m_q[W] = d;
+ }
+
+
+ protected:
+
+ vector_type m_q;
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_comparison_h
+#define quaternion_comparison_h
+
+#include <cml/core/cml_assert.h>
+#include <cml/et/scalar_ops.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * quaternion_comparison is not provided with quaternion or QuaternionExpr arguments:
+ */
+struct quaternion_comparison_expects_quaternion_args_error;
+
+#define CML_QUAT_QUAT_ORDER(_order_, _op_, _OpT_) \
+template< \
+ typename E1, class AT1, typename E2, class AT2, class O, class C > \
+inline bool \
+_op_ ( \
+ const quaternion<E1,AT1,O,C>& left, \
+ const quaternion<E2,AT2,O,C>& right) \
+{ \
+ return detail::quaternion_##_order_ (left, right, _OpT_ <E1,E2>()); \
+}
+
+#define CML_QUAT_QUATXPR_ORDER(_order_, _op_, _OpT_) \
+template<typename E, class AT, class O, class C, class XprT> \
+inline bool \
+_op_ ( \
+ const quaternion<E,AT,O,C>& left, \
+ QUATXPR_ARG_TYPE right) \
+{ \
+ return detail::quaternion_##_order_ (left, right, \
+ _OpT_ <E, typename XprT::value_type>()); \
+}
+
+#define CML_QUATXPR_QUAT_ORDER(_order_, _op_, _OpT_) \
+template<class XprT, typename E, class AT, class O, class C > \
+inline bool \
+_op_ ( \
+ QUATXPR_ARG_TYPE left, \
+ const quaternion<E,AT,O,C>& right) \
+{ \
+ return detail::quaternion_##_order_ (left, right, \
+ _OpT_ <typename XprT::value_type, E>()); \
+}
+
+#define CML_QUATXPR_QUATXPR_ORDER(_order_, _op_, _OpT_) \
+template<class XprT1, class XprT2> \
+inline bool \
+_op_ ( \
+ QUATXPR_ARG_TYPE_N(1) left, \
+ QUATXPR_ARG_TYPE_N(2) right) \
+{ \
+ return detail::quaternion_##_order_ (left, right, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type>()); \
+}
+
+
+namespace cml {
+namespace detail {
+
+/** Quaternion strict weak ordering relationship.
+ *
+ * OpT must implement a strict weak order on the quaternion element type.
+ * operator< and operator> on integer and floating-point types are
+ * examples.
+ */
+template<typename LeftT, typename RightT, typename OpT>
+inline bool
+quaternion_weak_order(const LeftT& left, const RightT& right, OpT)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+
+ /* quaternion_comparison() requires quaternion expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::QuaternionExpressions<LeftT,RightT>::is_true),
+ quaternion_comparison_expects_quaternion_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas:
+ */
+
+ typedef typename et::QuaternionPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::type result_type;
+
+ for(ssize_t i = 0; i < result_type::array_size; ++ i) {
+
+ if(OpT().apply(
+ left_traits().get(left,i),
+ right_traits().get(right,i)
+ ))
+ {
+ /* If weak order (a < b) is satisfied, return true: */
+ return true;
+ } else if(OpT().apply(
+ right_traits().get(right,i),
+ left_traits().get(left,i)
+ ))
+ {
+ /* If !(b < a), then return false: */
+ return false;
+ } else {
+
+ /* Have !(a < b) && !(b < a) <=> (a >= b && b >= a) <=> (a == b).
+ * so need to test next element:
+ */
+ continue;
+ }
+ }
+ /* XXX Can this be unrolled in any reasonable way? */
+
+ /* If we get here, then left == right: */
+ return false;
+}
+
+/** Quaternion total order relationship.
+ *
+ * OpT must implement a total order on the quaternion element type. operator<=
+ * and operator>= on integer and floating-point types are examples.
+ */
+template<typename LeftT, typename RightT, typename OpT>
+inline bool
+quaternion_total_order(const LeftT& left, const RightT& right, OpT)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+
+ /* quaternion_comparison() requires quaternion expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::QuaternionExpressions<LeftT,RightT>::is_true),
+ quaternion_comparison_expects_quaternion_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas:
+ */
+
+ typedef typename et::QuaternionPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::type result_type;
+
+ for(ssize_t i = 0; i < result_type::array_size; ++ i) {
+
+ /* Test total order: */
+ if(OpT().apply(
+ left_traits().get(left,i),
+ right_traits().get(right,i)
+ ))
+ {
+ /* Automatically true if weak order (a <= b) && !(b <= a) <=>
+ * (a <= b) && (b > a) <=> (a < b) is satisfied:
+ */
+ if(!OpT().apply(
+ right_traits().get(right,i),
+ left_traits().get(left,i)
+ ))
+ return true;
+
+ /* Otherwise, have equality (a <= b) && (b <= a), so continue
+ * to next element:
+ */
+ else
+ continue;
+
+ } else {
+
+ /* Total order isn't satisfied (a > b), so return false: */
+ return false;
+ }
+ }
+ /* XXX Can this be unrolled in any reasonable way? */
+
+ /* Total (==) or weak (<) order was satisfied, so return true: */
+ return true;
+}
+
+}
+
+/* XXX There is a better way to handle these with operator traits... */
+
+CML_QUAT_QUAT_ORDER( total_order, operator==, et::OpEqual)
+CML_QUATXPR_QUAT_ORDER( total_order, operator==, et::OpEqual)
+CML_QUAT_QUATXPR_ORDER( total_order, operator==, et::OpEqual)
+CML_QUATXPR_QUATXPR_ORDER( total_order, operator==, et::OpEqual)
+
+CML_QUAT_QUAT_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_QUATXPR_QUAT_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_QUAT_QUATXPR_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_QUATXPR_QUATXPR_ORDER( weak_order, operator!=, et::OpNotEqual)
+
+CML_QUAT_QUAT_ORDER( weak_order, operator<, et::OpLess)
+CML_QUATXPR_QUAT_ORDER( weak_order, operator<, et::OpLess)
+CML_QUAT_QUATXPR_ORDER( weak_order, operator<, et::OpLess)
+CML_QUATXPR_QUATXPR_ORDER( weak_order, operator<, et::OpLess)
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_dot_h
+#define quaternion_dot_h
+
+#include <cml/vector/vector_products.h>
+#include <cml/quaternion/quaternion_expr.h>
+
+namespace cml {
+namespace detail {
+
+template<class LeftT, class RightT> inline
+typename detail::DotPromote<LeftT,RightT>::promoted_scalar
+quaternion_dot(const LeftT& p, const RightT& q)
+{
+ return p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
+}
+
+} // namespace detail
+
+template<typename E1, class AT1, typename E2, class AT2, class OT, class CT>
+inline typename detail::DotPromote<
+ quaternion<E1,AT1,OT,CT>, quaternion<E2,AT2,OT,CT>
+>::promoted_scalar
+dot(const quaternion<E1,AT1,OT,CT>& p,
+ const quaternion<E2,AT2,OT,CT>& q)
+{
+ return detail::quaternion_dot(p,q);
+}
+
+template<typename E, class AT, class OT, class CT, class XprT>
+inline typename detail::DotPromote<
+ quaternion<E,AT,OT,CT>, et::QuaternionXpr<XprT>
+>::promoted_scalar
+dot(const quaternion<E,AT,OT,CT>& p, QUATXPR_ARG_TYPE q)
+{
+ return detail::quaternion_dot(p,q);
+}
+
+template<class XprT, typename E, class AT, class OT, class CT>
+inline typename detail::DotPromote<
+ et::QuaternionXpr<XprT>, quaternion<E,AT,OT,CT>
+>::promoted_scalar
+dot(QUATXPR_ARG_TYPE p, const quaternion<E,AT,OT,CT>& q)
+{
+ return detail::quaternion_dot(p,q);
+}
+
+template<class XprT1, class XprT2> inline
+typename detail::DotPromote<
+ et::QuaternionXpr<XprT1>, et::QuaternionXpr<XprT2>
+>::promoted_scalar
+dot(QUATXPR_ARG_TYPE_N(1) p, QUATXPR_ARG_TYPE_N(2) q)
+{
+ return detail::quaternion_dot(p,q);
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_expr_h
+#define quaternion_expr_h
+
+#include <cml/et/size_checking.h>
+#include <cml/mathlib/epsilon.h>
+#include <cml/quaternion/quaternion_traits.h>
+#include <cml/quaternion/quaternion_promotions.h>
+#include <cml/util.h>
+
+#define QUATXPR_ARG_TYPE const et::QuaternionXpr<XprT>&
+#define QUATXPR_ARG_TYPE_N(_N_) const et::QuaternionXpr<XprT##_N_>&
+
+namespace cml {
+namespace et {
+
+/** A placeholder for a quaternion expression in an expression tree. */
+template<class ExprT>
+class QuaternionXpr
+{
+ public:
+
+ typedef QuaternionXpr<ExprT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef typename ExprT::expr_ary expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename ExprT::value_type value_type;
+ typedef quaternion_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Get the reference type: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type: */
+ typedef typename expr_traits::result_type result_type;
+
+ /* Get the vector type: */
+ typedef typename result_type::vector_type vector_type;
+
+ /* Get the imaginary part type: */
+ typedef typename vector_type::subvector_type imaginary_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* Record the order type: */
+ typedef typename result_type::order_type order_type;
+
+ /* Record the cross type: */
+ typedef typename result_type::cross_type cross_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = ExprT::array_size };
+
+
+ public:
+
+ /** Return the real part of the expression. */
+ value_type real() const {
+ return m_expr.real();
+ }
+
+ /** Return the vector part of the expression. */
+ imaginary_type imaginary() const {
+ return m_expr.imaginary();
+ }
+
+ /** Return the Cayley norm of the expression. */
+ value_type norm() const {
+ return m_expr.length_squared();
+ }
+
+ /** Return square of the quaternion length. */
+ value_type length_squared() const {
+ return m_expr.length_squared();
+ }
+
+ /** Return the quaternion length. */
+ value_type length() const {
+ return m_expr.length();
+ }
+
+ /** Return the result as a normalized quaternion. */
+ temporary_type normalize() const {
+ return m_expr.normalize();
+ }
+
+ /** Return the log of the expression. */
+ temporary_type log(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ return m_expr.log(tolerance);
+ }
+
+ /**
+ * Return the result of the exponential function as applied to
+ * this expression.
+ */
+ temporary_type exp(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ return m_expr.exp(tolerance);
+ }
+
+ /** Compute value at index i of the result quaternion. */
+ value_type operator[](size_t i) const {
+ return m_expr[i];
+ }
+
+
+ public:
+
+ /** Return size of this expression (same as subexpression's size). */
+ size_t size() const {
+ return m_expr.size();
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+
+ public:
+
+ /** Construct from the subexpression to store. */
+ explicit QuaternionXpr(expr_reference expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ QuaternionXpr(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for QuaternionXpr<>. */
+template<class ExprT>
+struct ExprTraits< QuaternionXpr<ExprT> >
+{
+ typedef QuaternionXpr<ExprT> expr_type;
+ typedef ExprT arg_type;
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag not_assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+
+/** A unary quaternion expression.
+ *
+ * The operator's operator() method must take exactly one argument.
+ */
+template<class ExprT, class OpT>
+class UnaryQuaternionOp
+{
+ public:
+
+ typedef UnaryQuaternionOp<ExprT,OpT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename OpT::value_type value_type;
+ typedef quaternion_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits for the subexpression: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Reference type for the subexpression: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type (same as for subexpression): */
+ typedef typename expr_traits::result_type result_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* Get the vector type: */
+ typedef typename result_type::vector_type vector_type;
+
+ /* Get the imaginary part type: */
+ typedef typename vector_type::subvector_type imaginary_type;
+
+ /* Record the order type: */
+ typedef typename result_type::order_type order_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = ExprT::array_size };
+
+ /** Localize the ordering as an enum. */
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+
+ public:
+
+ /** Return the real part of the expression. */
+ value_type real() const {
+ return (*this)[W];
+ }
+
+ /** Return the vector part of the expression. */
+ imaginary_type imaginary() const {
+ imaginary_type v;
+ v[0] = (*this)[X]; v[1] = (*this)[Y]; v[2] = (*this)[Z];
+ return v;
+ }
+
+ /** Return the Cayley norm of the expression. */
+ value_type norm() const {
+ return length_squared();
+ }
+
+ /** Return square of the quaternion length. */
+ value_type length_squared() const {
+ return dot(
+ QuaternionXpr<expr_type>(*this),
+ QuaternionXpr<expr_type>(*this));
+ }
+
+ /** Return the quaternion length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Return the result as a normalized quaternion. */
+ temporary_type normalize() const {
+ temporary_type q(QuaternionXpr<expr_type>(*this));
+ return q.normalize();
+ }
+
+ /** Return the log of this expression. */
+ temporary_type log(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ value_type a = acos_safe(real());
+ value_type s = std::sin(a);
+
+ if (s > tolerance) {
+ return temporary_type(value_type(0), imaginary() * (a / s));
+ } else {
+ return temporary_type(value_type(0), imaginary());
+ }
+ }
+
+ /**
+ * Return the result of the exponential function as applied to
+ * this expression.
+ */
+ temporary_type exp(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ imaginary_type v = imaginary();
+ value_type a = cml::length(v);
+
+ if (a > tolerance) {
+ return temporary_type(std::cos(a), v * (std::sin(a) / a));
+ } else {
+ return temporary_type(std::cos(a), v);
+ }
+ }
+
+ /** Compute value at index i of the result quaternion. */
+ value_type operator[](size_t i) const {
+
+ /* This uses the expression traits to figure out how to access the
+ * i'th index of the subexpression:
+ */
+ return OpT().apply(expr_traits().get(m_expr,i));
+ }
+
+
+ public:
+
+ /** Return size of this expression (same as argument's size). */
+ size_t size() const {
+ return m_expr.size();
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+
+ public:
+
+ /** Construct from the subexpression. */
+ explicit UnaryQuaternionOp(expr_reference expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ UnaryQuaternionOp(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for UnaryQuaternionOp<>. */
+template<class ExprT, class OpT>
+struct ExprTraits< UnaryQuaternionOp<ExprT,OpT> >
+{
+ typedef UnaryQuaternionOp<ExprT,OpT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag not_assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+
+/** A binary quaternion expression.
+ *
+ * The operator's operator() method must take exactly two arguments.
+ */
+template<class LeftT, class RightT, class OpT>
+class BinaryQuaternionOp
+{
+ public:
+
+ typedef BinaryQuaternionOp<LeftT,RightT,OpT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef binary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename OpT::value_type value_type;
+ typedef quaternion_result_tag result_tag;
+
+ /* Store the expression traits types for the two subexpressions: */
+ typedef ExprTraits<LeftT> left_traits;
+ typedef ExprTraits<RightT> right_traits;
+
+ /* Reference types for the two subexpressions: */
+ typedef typename left_traits::const_reference left_reference;
+ typedef typename right_traits::const_reference right_reference;
+
+ /* Figure out the expression's resulting (quaternion) type: */
+ typedef typename left_traits::result_type left_result;
+ typedef typename right_traits::result_type right_result;
+ typedef typename QuaternionPromote<left_result,right_result>::type
+ result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* Get the vector type: */
+ typedef typename result_type::vector_type vector_type;
+
+ /* Get the imaginary part type: */
+ typedef typename vector_type::subvector_type imaginary_type;
+
+ /* Record the order type: */
+ typedef typename result_type::order_type order_type;
+
+ /* Define a size checker: */
+ typedef GetCheckedSize<LeftT,RightT,size_tag> checked_size;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = 4 };
+
+ /** Localize the ordering as an enum. */
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+
+ public:
+
+ /** Return the real part of the expression. */
+ value_type real() const {
+ return (*this)[W];
+ }
+
+ /** Return the vector part of the expression. */
+ imaginary_type imaginary() const {
+ imaginary_type v;
+ v[0] = (*this)[X]; v[1] = (*this)[Y]; v[2] = (*this)[Z];
+ return v;
+ }
+
+ /** Return the Cayley norm of the expression. */
+ value_type norm() const {
+ return length_squared();
+ }
+
+ /** Return square of the quaternion length. */
+ value_type length_squared() const {
+ return dot(
+ QuaternionXpr<expr_type>(*this),
+ QuaternionXpr<expr_type>(*this));
+ }
+
+ /** Return the quaternion length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Return the result as a normalized quaternion. */
+ temporary_type normalize() const {
+ temporary_type q(QuaternionXpr<expr_type>(*this));
+ return q.normalize();
+ }
+
+ /** Return the log of this expression. */
+ temporary_type log(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ value_type a = acos_safe(real());
+ value_type s = std::sin(a);
+
+ if (s > tolerance) {
+ return temporary_type(value_type(0), imaginary() * (a / s));
+ } else {
+ return temporary_type(value_type(0), imaginary());
+ }
+ }
+
+ /**
+ * Return the result of the exponential function as applied to
+ * this expression.
+ */
+ temporary_type exp(
+ value_type tolerance = epsilon<value_type>::placeholder()) const
+ {
+ imaginary_type v = imaginary();
+ value_type a = cml::length(v);
+
+ if (a > tolerance) {
+ return temporary_type(std::cos(a), v * (std::sin(a) / a));
+ } else {
+ return temporary_type(std::cos(a), v);
+ }
+ }
+
+ /** Compute value at index i of the result quaternion. */
+ value_type operator[](size_t i) const {
+
+ /* This uses the expression traits to figure out how to access the
+ * i'th index of the two subexpressions:
+ */
+ return OpT().apply(
+ left_traits().get(m_left,i),
+ right_traits().get(m_right,i));
+ }
+
+
+ public:
+
+ /** Return the size of the quaternion result.
+ *
+ * @throws std::invalid_argument if the expressions do not have the same
+ * size.
+ */
+ size_t size() const {
+ /* Note: This actually does a check only if
+ * CML_CHECK_VECTOR_EXPR_SIZES is set:
+ */
+ CheckedSize(m_left,m_right,size_tag());
+
+ /* The size is always 4: */
+ return 4;
+ }
+
+ /** Return reference to left expression. */
+ left_reference left_expression() const { return m_left; }
+
+ /** Return reference to right expression. */
+ right_reference right_expression() const { return m_right; }
+
+
+ public:
+
+ /** Construct from the two subexpressions. */
+ explicit BinaryQuaternionOp(left_reference left, right_reference right)
+ : m_left(left), m_right(right) {}
+
+ /** Copy constructor. */
+ BinaryQuaternionOp(const expr_type& e)
+ : m_left(e.m_left), m_right(e.m_right) {}
+
+
+ protected:
+
+ left_reference m_left;
+ right_reference m_right;
+
+
+ private:
+
+ /* This ensures that a compile-time size check is executed: */
+ typename checked_size::check_type _dummy;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for BinaryQuaternionOp<>. */
+template<class LeftT, class RightT, class OpT>
+struct ExprTraits< BinaryQuaternionOp<LeftT,RightT,OpT> >
+{
+ typedef BinaryQuaternionOp<LeftT,RightT,OpT> expr_type;
+ typedef LeftT left_type;
+ typedef RightT right_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::imaginary_type imaginary_type;
+ typedef typename expr_type::assignable_tag not_assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+
+/* Helper struct to verify that both arguments are quaternion expressions: */
+template<class LeftTraits, class RightTraits>
+struct QuaternionExpressions
+{
+ /* Require that both arguments are quaternion expressions: */
+ typedef typename LeftTraits::result_tag left_result;
+ typedef typename RightTraits::result_tag right_result;
+ enum { is_true = (same_type<left_result,et::quaternion_result_tag>::is_true
+ && same_type<right_result,et::quaternion_result_tag>::is_true) };
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Functions on quaternions.
+ *
+ * @todo The functions that return quaternions and vectors should be changed
+ * to return quaternion expression nodes, as should the corresponding
+ * class methods.
+ */
+
+#ifndef quaternion_functions_h
+#define quaternion_functions_h
+
+#include <cml/mathlib/checking.h> // For CheckQuat()
+#include <cml/mathlib/epsilon.h>
+#include <cml/util.h> // For acos_safe()
+
+namespace cml {
+
+/** Returns the real part of the quaternion. */
+template<typename E, class AT, class OT, class CT>
+inline typename quaternion<E,AT,OT,CT>::value_type
+real(const quaternion<E,AT,OT,CT>& q)
+{
+ return q.real();
+}
+
+/** Returns the real (scalar) part of the QuaternionXpr. */
+template<typename XprT>
+inline typename et::QuaternionXpr<XprT>::value_type
+real(const et::QuaternionXpr<XprT>& e)
+{
+ return e.real();
+}
+
+/** Returns the imaginary (vector) part of the quaternion. */
+template<typename E, class AT, class OT, class CT>
+inline typename quaternion<E,AT,OT,CT>::imaginary_type
+imaginary(const quaternion<E,AT,OT,CT>& q)
+{
+ return q.imaginary();
+}
+
+/** Returns the imaginary (vector) part of the QuaternionXpr. */
+template<typename XprT>
+//inline typename et::QuaternionXpr<XprT>::temporary_type
+inline typename et::QuaternionXpr<XprT>::imaginary_type
+imaginary(const et::QuaternionXpr<XprT>& e)
+{
+ return e.imaginary();
+}
+
+/** Cayley norm of a quaternion. */
+template<typename E, class AT, class OT, class CT>
+inline typename quaternion<E,AT,OT,CT>::value_type
+norm(const quaternion<E,AT,OT,CT>& arg)
+{
+ return arg.length_squared();
+}
+
+/** Cayley norm of a QuaternionXpr. */
+template<typename XprT>
+inline typename XprT::value_type
+norm(QUATXPR_ARG_TYPE arg)
+{
+ return arg.length_squared();
+}
+
+/** Squared length of a quaternion. */
+template<typename E, class AT, class OT, class CT>
+inline typename quaternion<E,AT,OT,CT>::value_type
+length_squared(const quaternion<E,AT,OT,CT>& arg)
+{
+ return arg.length_squared();
+}
+
+/** Squared length of a quaternion expr. */
+template<typename XprT>
+inline typename XprT::value_type
+length_squared(QUATXPR_ARG_TYPE arg)
+{
+ return arg.length_squared();
+}
+
+/** Length of a quaternion. */
+template<typename E, class AT, class OT, class CT>
+inline typename quaternion<E,AT,OT,CT>::value_type
+length(const quaternion<E,AT,OT,CT>& arg)
+{
+ return arg.length();
+}
+
+/** Length of a quaternion expr. */
+template<typename XprT>
+inline typename XprT::value_type
+length(QUATXPR_ARG_TYPE arg)
+{
+ return arg.length();
+}
+
+/** Normalize a quaternion.
+ *
+ * The input quaternion is not changed.
+ */
+template<typename E, class AT, class OT, class CT>
+inline quaternion<E,AT,OT,CT>
+normalize(const quaternion<E,AT,OT,CT>& arg)
+{
+ typename quaternion<E,AT,OT,CT>::temporary_type result(arg);
+ result.normalize();
+ return result;
+}
+
+/** Normalize a quaternion expr. */
+template<typename XprT>
+inline typename XprT::temporary_type
+normalize(QUATXPR_ARG_TYPE arg)
+{
+ return arg.normalize();
+}
+
+/** Set a quaternion to the multiplicative identity.
+ *
+ * The input quaternion is not changed.
+ */
+template<typename E, class AT, class OT, class CT>
+inline quaternion<E,AT,OT,CT>
+identity(const quaternion<E,AT,OT,CT>& arg)
+{
+ typename quaternion<E,AT,OT,CT>::temporary_type result(arg);
+ result.identity();
+ return result;
+}
+
+/** Log of a quaternion or quaternion expression.
+ */
+template < class QuatT >
+typename QuatT::temporary_type log(
+ const QuatT& q,
+ typename QuatT::value_type tolerance =
+ epsilon<typename QuatT::value_type>::placeholder())
+{
+ detail::CheckQuat(q);
+
+ return q.log();
+}
+
+/** Exponential function of a quaternion or quaternion expression.
+ */
+template < class QuatT >
+typename QuatT::temporary_type exp(
+ const QuatT& q,
+ typename QuatT::value_type tolerance =
+ epsilon<typename QuatT::value_type>::placeholder())
+{
+ detail::CheckQuat(q);
+
+ return q.exp();
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Multiplication of two quaternions, p*q.
+ *
+ * This uses the expression tree, since the result is closed-form and can be
+ * computed by index.
+ */
+
+#ifndef quaternion_mul_h
+#define quaternion_mul_h
+
+#include <cml/mathlib/checking.h>
+#include <cml/quaternion/quaternion_promotions.h>
+
+namespace cml {
+namespace detail {
+
+template < class CrossType, class Real > struct SumOp;
+
+template < class Real > struct SumOp< positive_cross, Real > {
+ Real operator()(Real a, Real b) const {
+ return a + b;
+ }
+};
+
+template < class Real > struct SumOp< negative_cross, Real > {
+ Real operator()(Real a, Real b) const {
+ return a - b;
+ }
+};
+
+template < class Quat1_T, class Quat2_T >
+typename et::QuaternionPromote<
+ typename Quat1_T::temporary_type, typename Quat2_T::temporary_type
+>::temporary_type
+QuaternionMult(const Quat1_T& q1, const Quat2_T& q2)
+{
+ detail::CheckQuat(q1);
+ detail::CheckQuat(q2);
+
+ typedef typename et::QuaternionPromote<
+ typename Quat1_T::temporary_type, typename Quat2_T::temporary_type
+ >::temporary_type temporary_type;
+
+ typedef typename temporary_type::value_type value_type;
+ typedef typename temporary_type::order_type order_type;
+ typedef typename temporary_type::cross_type cross_type;
+
+ typedef detail::SumOp<cross_type, value_type> sum_op;
+
+ enum {
+ W = order_type::W,
+ X = order_type::X,
+ Y = order_type::Y,
+ Z = order_type::Z
+ };
+
+ temporary_type result;
+
+ /* s1*s2-dot(v1,v2): */
+ result[W] =
+ q1[W]*q2[W] - q1[X]*q2[X] - q1[Y]*q2[Y] - q1[Z]*q2[Z];
+
+ /* (s1*v2 + s2*v1 + v1^v2) i: */
+ result[X] =
+ sum_op()(q1[W]*q2[X] + q2[W]*q1[X], q1[Y]*q2[Z] - q1[Z]*q2[Y]);
+
+ /* (s1*v2 + s2*v1 + v1^v2) j: */
+ result[Y] =
+ sum_op()(q1[W]*q2[Y] + q2[W]*q1[Y], q1[Z]*q2[X] - q1[X]*q2[Z]);
+
+ /* (s1*v2 + s2*v1 + v1^v2) k: */
+ result[Z] =
+ sum_op()(q1[W]*q2[Z] + q2[W]*q1[Z], q1[X]*q2[Y] - q1[Y]*q2[X]);
+
+ return result;
+}
+
+} // namespace detail
+
+/** Declare mul taking two quaternion operands. */
+template<typename E1, class AT1, typename E2, class AT2, class OT, class CT>
+inline typename et::QuaternionPromote<
+ typename quaternion<E1,AT1,OT,CT>::temporary_type,
+ typename quaternion<E2,AT2,OT,CT>::temporary_type
+>::temporary_type operator*(
+ const quaternion<E1,AT1,OT,CT>& left,
+ const quaternion<E2,AT2,OT,CT>& right)
+{
+ return detail::QuaternionMult(left, right);
+}
+
+/** Declare mul taking a quaternion and a et::QuaternionXpr. */
+template<typename E, class AT, class OT, class CT, class XprT>
+inline typename et::QuaternionPromote<
+ typename quaternion<E,AT,OT,CT>::temporary_type,
+ typename XprT::temporary_type
+>::temporary_type operator*(
+ const quaternion<E,AT,OT,CT>& left,
+ QUATXPR_ARG_TYPE right)
+{
+ return detail::QuaternionMult(left, right);
+}
+
+/** Declare mul taking an et::QuaternionXpr and a quaternion. */
+template<class XprT, typename E, class AT, class OT, class CT>
+inline typename et::QuaternionPromote<
+ typename XprT::temporary_type,
+ typename quaternion<E,AT,OT,CT>::temporary_type
+>::temporary_type operator*(
+ QUATXPR_ARG_TYPE left,
+ const quaternion<E,AT,OT,CT>& right)
+{
+ return detail::QuaternionMult(left, right);
+}
+
+/** Declare mul taking two et::QuaternionXpr operands. */
+template<class XprT1, class XprT2>
+inline typename et::QuaternionPromote<
+ typename XprT1::temporary_type, typename XprT2::temporary_type
+>::temporary_type operator*(
+ QUATXPR_ARG_TYPE_N(1) left,
+ QUATXPR_ARG_TYPE_N(2) right)
+{
+ return detail::QuaternionMult(left, right);
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines the linear quaternion ops.
+ */
+
+#ifndef quaternion_ops_h
+#define quaternion_ops_h
+
+#include <cml/et/scalar_ops.h>
+#include <cml/quaternion/quaternion_expr.h>
+#include <cml/quaternion/quatop_macros.h>
+
+namespace cml {
+
+CML_QUAT_UNIOP( operator+, et::OpPos)
+CML_QUATXPR_UNIOP( operator+, et::OpPos)
+
+CML_QUAT_UNIOP( operator-, et::OpNeg)
+CML_QUATXPR_UNIOP( operator-, et::OpNeg)
+
+CML_QUAT_QUAT_BINOP( operator+, et::OpAdd)
+CML_QUATXPR_QUAT_BINOP( operator+, et::OpAdd)
+CML_QUAT_QUATXPR_BINOP( operator+, et::OpAdd)
+CML_QUATXPR_QUATXPR_BINOP( operator+, et::OpAdd)
+
+CML_QUAT_QUAT_BINOP( operator-, et::OpSub)
+CML_QUATXPR_QUAT_BINOP( operator-, et::OpSub)
+CML_QUAT_QUATXPR_BINOP( operator-, et::OpSub)
+CML_QUATXPR_QUATXPR_BINOP( operator-, et::OpSub)
+
+CML_QUAT_SCALAR_BINOP( operator*, et::OpMul)
+CML_SCALAR_QUAT_BINOP( operator*, et::OpMul)
+CML_QUATXPR_SCALAR_BINOP( operator*, et::OpMul)
+CML_SCALAR_QUATXPR_BINOP( operator*, et::OpMul)
+
+CML_QUAT_SCALAR_BINOP( operator/, et::OpDiv)
+CML_QUATXPR_SCALAR_BINOP( operator/, et::OpDiv)
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_print_h
+#define quaternion_print_h
+
+#include <iostream>
+
+namespace cml {
+
+/* NOTE: Made 'plain' quaternion output the default (Jesse) */
+
+/* #if !defined(CML_PLAIN_QUATERNION_OUTPUT) */
+#if defined(CML_COMPLEX_QUATERNION_OUTPUT)
+
+template<typename E, class AT, class CT> std::ostream&
+operator<<(std::ostream& os, const cml::quaternion<E,AT,scalar_first,CT>& q)
+{
+ os << ((q[0] < 0)?" - ":"") << std::fabs(q[0]);
+ os << ((q[1] < 0)?" - ":" + ") << std::fabs(q[1]) << "i";
+ os << ((q[2] < 0)?" - ":" + ") << std::fabs(q[2]) << "j";
+ os << ((q[3] < 0)?" - ":" + ") << std::fabs(q[3]) << "k";
+ return os;
+}
+
+template<typename E, class AT, class CT> std::ostream&
+operator<<(std::ostream& os, const cml::quaternion<E,AT,vector_first,CT>& q)
+{
+ os << ((q[0] < 0)?" - ":"") << std::fabs(q[0]) << "i";
+ os << ((q[1] < 0)?" - ":" + ") << std::fabs(q[1]) << "j";
+ os << ((q[2] < 0)?" - ":" + ") << std::fabs(q[2]) << "k";
+ os << ((q[3] < 0)?" - ":" + ") << std::fabs(q[3]);
+ return os;
+}
+
+#else
+
+/** Output a quaternion to a std::ostream. */
+template<typename E, class AT, class OT, typename CT> std::ostream&
+operator<<(std::ostream& os, const cml::quaternion<E,AT,OT,CT>& q)
+{
+ os << "[";
+ for (size_t i = 0; i < 4; ++i) {
+ os << " " << q[i];
+ }
+ os << " ]";
+ return os;
+}
+
+#endif
+
+/** Output a quaternion expression to a std::ostream. */
+template< class XprT > inline std::ostream&
+operator<<(std::ostream& os, const et::QuaternionXpr<XprT>& q)
+{
+ typedef typename et::QuaternionXpr<XprT>::result_type quaternion_type;
+
+ os << quaternion_type(q);
+ /* XXX This temporary can be removed by templating the stream insertion
+ * operators above.
+ */
+
+ return os;
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_promotions_h
+#define quaternion_promotions_h
+
+#include <cml/et/scalar_promotions.h>
+#include <cml/vector/vector_promotions.h>
+
+namespace cml {
+namespace et {
+
+/* Default quaternion type promotion templates. */
+template<class LeftT, class RightT> struct QuaternionPromote;
+
+/** Type promotion for two quaternion types. */
+template<typename E1, class AT1, typename E2, class AT2, class OT, class CT>
+struct QuaternionPromote<
+ cml::quaternion<E1,AT1,OT,CT>,
+ cml::quaternion<E2,AT2,OT,CT>
+>
+{
+ /* The deduced vector type: */
+ typedef typename VectorPromote<
+ typename cml::quaternion<E1,AT1,OT,CT>::vector_type,
+ typename cml::quaternion<E2,AT2,OT,CT>::vector_type
+ >::type promoted_vector;
+
+ /* The deduced element and storage types: */
+ typedef typename promoted_vector::value_type value_type;
+ typedef typename promoted_vector::storage_type storage_type;
+
+ /* The deduced quaternion result type: */
+ typedef cml::quaternion<value_type,storage_type,OT,CT> type;
+
+ /* The temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+/**
+ * NOTE: QuaternionPromote* are somewhat ad hoc, and were added to
+ * simplify the code for quaternion slerp/squad/etc.
+ */
+
+/** Type promotion for two quaternion types. */
+template < class Quat1_T, class Quat2_T >
+struct QuaternionPromote2
+{
+ typedef typename QuaternionPromote<
+ typename Quat1_T::temporary_type, typename Quat2_T::temporary_type
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+/** Type promotion for three quaternion types. */
+template < class Quat1_T, class Quat2_T, class Quat3_T >
+struct QuaternionPromote3
+{
+ typedef typename QuaternionPromote<
+ typename Quat1_T::temporary_type,
+ typename QuaternionPromote<
+ typename Quat2_T::temporary_type, typename Quat3_T::temporary_type
+ >::temporary_type
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+/** Type promotion for four quaternion types. */
+template < class Quat1_T, class Quat2_T, class Quat3_T, class Quat4_T >
+struct QuaternionPromote4
+{
+ typedef typename QuaternionPromote<
+ typename Quat1_T::temporary_type,
+ typename QuaternionPromote<
+ typename Quat2_T::temporary_type,
+ typename QuaternionPromote<
+ typename Quat3_T::temporary_type,
+ typename Quat4_T::temporary_type
+ >::temporary_type
+ >::temporary_type
+ >::temporary_type temporary_type;
+ typedef typename temporary_type::value_type value_type;
+};
+
+/** Type promotion for a quaternion and a scalar. */
+template<typename E, class AT, class OT, class CT, typename S>
+struct QuaternionPromote<cml::quaternion<E,AT,OT,CT>, S>
+{
+ /* The deduced vector type: */
+ typedef typename VectorPromote<
+ typename quaternion<E,AT,OT,CT>::vector_type, S
+ >::type promoted_vector;
+
+ /* The deduced element and storage types: */
+ typedef typename promoted_vector::value_type value_type;
+ typedef typename promoted_vector::storage_type storage_type;
+
+ /* The deduced quaternion result type: */
+ typedef cml::quaternion<value_type,storage_type,OT,CT> type;
+
+ /* The temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+/** Type promotion for a scalar and a quaternion. */
+template<class S, typename E, class AT, class OT, class CT>
+struct QuaternionPromote<S, cml::quaternion<E,AT,OT,CT> >
+{
+ /* The deduced vector type: */
+ typedef typename VectorPromote<
+ S, typename quaternion<E,AT,OT,CT>::vector_type
+ >::type promoted_vector;
+
+ /* The deduced element and storage types: */
+ typedef typename promoted_vector::value_type value_type;
+ typedef typename promoted_vector::storage_type storage_type;
+
+ /* The deduced quaternion result type: */
+ typedef cml::quaternion<value_type,storage_type,OT,CT> type;
+
+ /* The temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef quaternion_traits_h
+#define quaternion_traits_h
+
+#include <cml/et/traits.h>
+
+namespace cml {
+namespace et {
+
+/** Expression traits for a quaternion<> type. */
+template<typename E, class AT, class OT, class CT>
+struct ExprTraits< cml::quaternion<E,AT,OT,CT> >
+{
+ typedef typename cml::quaternion<E,AT,OT,CT>::expr_type expr_type;
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_reference reference;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_type result_type;
+ typedef expr_leaf_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& v) const { return 4; }
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Create unary and binary operators with macros.
+ *
+ * These macros work just like those in cml/quaternion/vecop_macros.h.
+ */
+
+#ifndef quatop_macros_h
+#define quatop_macros_h
+
+/** Declare a unary operator taking a quaternion operand. */
+#define CML_QUAT_UNIOP(_op_, _OpT_) \
+template<typename E, class AT, class OT, class CT> \
+inline et::QuaternionXpr< \
+ et::UnaryQuaternionOp< quaternion<E,AT,OT,CT>, _OpT_ <E> > \
+> \
+ \
+_op_ (const quaternion<E,AT,OT,CT>& arg) \
+{ \
+ typedef et::UnaryQuaternionOp< \
+ quaternion<E,AT,OT,CT>, _OpT_ <E> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(arg)); \
+}
+
+
+/** Declare a unary operator taking a et::QuaternionXpr operand. */
+#define CML_QUATXPR_UNIOP(_op_, _OpT_) \
+template<class XprT> \
+inline et::QuaternionXpr< \
+ et::UnaryQuaternionOp< XprT, _OpT_ <typename XprT::value_type> > \
+> \
+ \
+_op_ (QUATXPR_ARG_TYPE arg) \
+{ \
+ typedef et::UnaryQuaternionOp< \
+ XprT, _OpT_ <typename XprT::value_type> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(arg.expression())); \
+}
+
+
+
+/** Declare an operator taking two quaternion operands. */
+#define CML_QUAT_QUAT_BINOP(_op_, _OpT_) \
+template<typename E1, class AT1, typename E2, class AT2, \
+ class OT, class CT> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ quaternion<E1,AT1,OT,CT>, quaternion<E2,AT2,OT,CT>, \
+ _OpT_ <E1,E2> \
+ > \
+> \
+ \
+_op_ ( \
+ const quaternion<E1,AT1,OT,CT>& left, \
+ const quaternion<E2,AT2,OT,CT>& right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ quaternion<E1,AT1,OT,CT>, quaternion<E2,AT2,OT,CT>, \
+ _OpT_ <E1,E2> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(left,right)); \
+}
+
+
+/** Declare an operator taking a quaternion and a et::QuaternionXpr. */
+#define CML_QUAT_QUATXPR_BINOP(_op_, _OpT_) \
+template<typename E, class AT, class OT, class CT, class XprT> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ quaternion<E,AT,OT,CT>, XprT, \
+ _OpT_ <E, typename XprT::value_type> \
+ > \
+> \
+ \
+_op_ ( \
+ const quaternion<E,AT,OT,CT>& left, \
+ QUATXPR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ quaternion<E,AT,OT,CT>, XprT, \
+ _OpT_ <E, typename XprT::value_type> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(left,right.expression())); \
+}
+
+
+/** Declare an operator taking an et::QuaternionXpr and a quaternion. */
+#define CML_QUATXPR_QUAT_BINOP(_op_, _OpT_) \
+template<class XprT, typename E, class AT, class OT, class CT> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ XprT, quaternion<E,AT,OT,CT>, \
+ _OpT_ <typename XprT::value_type, E> \
+ > \
+> \
+ \
+_op_ ( \
+ QUATXPR_ARG_TYPE left, \
+ const quaternion<E,AT,OT,CT>& right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ XprT, quaternion<E,AT,OT,CT>, \
+ _OpT_ <typename XprT::value_type, E> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(left.expression(),right)); \
+}
+
+
+/** Declare an operator taking two et::QuaternionXpr operands. */
+#define CML_QUATXPR_QUATXPR_BINOP(_op_, _OpT_) \
+template<class XprT1, class XprT2> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ XprT1, XprT2, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type \
+ > \
+ > \
+> \
+ \
+_op_ ( \
+ QUATXPR_ARG_TYPE_N(1) left, \
+ QUATXPR_ARG_TYPE_N(2) right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ XprT1, XprT2, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>( \
+ ExprT(left.expression(),right.expression())); \
+}
+
+
+/** Declare an operator taking a quaternion and a scalar. */
+#define CML_QUAT_SCALAR_BINOP(_op_, _OpT_) \
+template<typename E, class AT, class OT, class CT, typename ScalarT> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ quaternion<E,AT,OT,CT>, ScalarT, \
+ _OpT_ <E,ScalarT> \
+ > \
+> \
+ \
+_op_ ( \
+ const quaternion<E,AT,OT,CT>& left, \
+ SCALAR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ quaternion<E,AT,OT,CT>, ScalarT, _OpT_ <E,ScalarT> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(left,right)); \
+}
+
+
+/** Declare an operator taking a scalar and a quaternion. */
+#define CML_SCALAR_QUAT_BINOP(_op_, _OpT_) \
+template<typename ScalarT, typename E, class AT, class OT, class CT> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ ScalarT, quaternion<E,AT,OT,CT>, _OpT_ <ScalarT,E> \
+ > \
+> \
+ \
+_op_ ( \
+ SCALAR_ARG_TYPE left, \
+ const quaternion<E,AT,OT,CT>& right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ ScalarT, quaternion<E,AT,OT,CT>, _OpT_ <ScalarT,E> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(left,right)); \
+}
+
+
+/** Declare an operator taking a et::QuaternionXpr and a scalar. */
+#define CML_QUATXPR_SCALAR_BINOP(_op_, _OpT_) \
+template<class XprT, typename ScalarT> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ XprT, ScalarT, _OpT_ <typename XprT::value_type,ScalarT> \
+ > \
+> \
+ \
+_op_ ( \
+ QUATXPR_ARG_TYPE left, \
+ SCALAR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ XprT, ScalarT, _OpT_ <typename XprT::value_type,ScalarT> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(left.expression(),right)); \
+}
+
+
+/** Declare an operator taking a scalar and a et::QuaternionXpr. */
+#define CML_SCALAR_QUATXPR_BINOP(_op_, _OpT_) \
+template<typename ScalarT, class XprT> \
+inline et::QuaternionXpr< \
+ et::BinaryQuaternionOp< \
+ ScalarT, XprT, _OpT_ <ScalarT, typename XprT::value_type> \
+ > \
+> \
+ \
+_op_ ( \
+ SCALAR_ARG_TYPE left, \
+ QUATXPR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryQuaternionOp< \
+ ScalarT, XprT, \
+ _OpT_ <ScalarT, typename XprT::value_type> \
+ > ExprT; \
+ return et::QuaternionXpr<ExprT>(ExprT(left,right.expression())); \
+}
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef cml_util_h
+#define cml_util_h
+
+#include <algorithm> // For std::min and std::max.
+#include <cstdlib> // For std::rand.
+#include <cml/constants.h>
+
+namespace cml {
+
+/** Sign of input value as double. */
+template < typename T >
+double sign(T value) {
+ return value < T(0) ? -1.0 : (value > T(0) ? 1.0 : 0.0);
+}
+
+/** Clamp input value to the range [min, max]. */
+template < typename T >
+T clamp(T value, T min, T max) {
+ return std::max(std::min(value, max), min);
+}
+
+/** Test input value for inclusion in [min, max]. */
+template < typename T >
+bool in_range(T value, T min, T max) {
+ return value >= min && value <= max;
+}
+
+/** Map input value from [min1, max1] to [min2, max2]. */
+template < typename T >
+T map_range(T value, T min1, T max1, T min2, T max2) {
+ return min2 + ((value - min1) / (max1 - min1)) * (max2 - min2);
+}
+
+
+/** Wrap std::acos() and clamp argument to [-1, 1]. */
+template < typename T >
+T acos_safe(T theta) {
+ return T(std::acos(clamp(theta, T(-1.0), T(1.0))));
+}
+
+/** Wrap std::asin() and clamp argument to [-1, 1]. */
+template < typename T >
+T asin_safe(T theta) {
+ return T(std::asin(clamp(theta, T(-1.0), T(1.0))));
+}
+
+/** Wrap std::sqrt() and clamp argument to [0, inf). */
+template < typename T >
+T sqrt_safe(T value) {
+ return T(std::sqrt(std::max(value, T(0.0))));
+}
+
+
+/** For convenient squaring of expressions. */
+template < typename T >
+T sqr(T value) {
+ return value * value;
+}
+
+/** Inverse square root. */
+template < typename T >
+T inv_sqrt(T value) {
+ return T(1.0 / std::sqrt(value));
+}
+
+
+/* The next few functions deal with indexing. next() and prev() are useful
+ * for operations involving the vertices of a polygon or other cyclic set,
+ * and cyclic_permutation() is used by various functions that deal with
+ * axes or basis vectors in a generic way. As these functions are only
+ * relevant for unsigned integer types, I've just used size_t, but there
+ * may be reasons I haven't thought of that they should be templated.
+ */
+
+/** Return next, with cycling, in a series of N non-negative integers. */
+inline size_t next(size_t i, size_t N) {
+ return (i + 1) % N;
+}
+
+/** Return previous, with cycling, in a series of N non-negative integers. */
+inline size_t prev(size_t i, size_t N) {
+ return i ? (i - 1) : (N - 1);
+}
+
+/** Cyclic permutation of the set { 0, 1 }, starting with 'first'. */
+inline void cyclic_permutation(size_t first, size_t& i, size_t& j) {
+ i = first;
+ j = next(i, 2);
+}
+
+/** Cyclic permutation of the set { 0, 1, 2 }, starting with 'first'. */
+inline void cyclic_permutation(size_t first, size_t& i, size_t& j, size_t& k)
+{
+ i = first;
+ j = next(i, 3);
+ k = next(j, 3);
+}
+
+/** Cyclic permutation of the set { 0, 1, 2, 3 }, starting with 'first'. */
+inline void cyclic_permutation(
+ size_t first, size_t& i, size_t& j, size_t& k, size_t& l)
+{
+ i = first;
+ j = next(i, 4);
+ k = next(j, 4);
+ l = next(k, 4);
+}
+
+
+/** Convert radians to degrees. */
+template < typename T >
+T deg(T theta) {
+ return theta * constants<T>::deg_per_rad();
+}
+
+/** Convert degrees to radians. */
+template < typename T >
+T rad(T theta) {
+ return theta * constants<T>::rad_per_deg();
+}
+
+/* Note: Moving interpolation functions to interpolation.h */
+
+#if 0
+/** Linear interpolation of 2 values.
+ *
+ * @note The data points are assumed to be sampled at u = 0 and u = 1, so
+ * for interpolation u must lie between 0 and 1.
+ */
+template <typename T, typename Scalar>
+T lerp(const T& f0, const T& f1, Scalar u) {
+ return (Scalar(1.0) - u) * f0 + u * f1;
+}
+#endif
+
+#if 0
+/** Bilinear interpolation of 4 values.
+ *
+ * @note The data points are assumed to be sampled at the corners of a unit
+ * square, so for interpolation u and v must lie between 0 and 1,
+ */
+template <typename T, typename Scalar>
+T bilerp(const T& f00, const T& f10,
+ const T& f01, const T& f11,
+ Scalar u, Scalar v)
+{
+ Scalar uv = u * v;
+ return (
+ (Scalar(1.0) - u - v + uv) * f00 +
+ (u - uv) * f10 +
+ (v - uv) * f01 +
+ uv * f11
+ );
+}
+#endif
+
+#if 0
+/** Trilinear interpolation of 8 values.
+ *
+ * @note The data values are assumed to be sampled at the corners of a unit
+ * cube, so for interpolation, u, v, and w must lie between 0 and 1.
+ */
+template <typename T, typename Scalar>
+T trilerp(const T& f000, const T& f100,
+ const T& f010, const T& f110,
+ const T& f001, const T& f101,
+ const T& f011, const T& f111,
+ Scalar u, Scalar v, Scalar w)
+{
+ Scalar uv = u * v;
+ Scalar vw = v * w;
+ Scalar wu = w * u;
+ Scalar uvw = uv * w;
+
+ return (
+ (Scalar(1.0) - u - v - w + uv + vw + wu - uvw) * f000 +
+ (u - uv - wu + uvw) * f100 +
+ (v - uv - vw + uvw) * f010 +
+ (uv - uvw) * f110 +
+ (w - vw - wu + uvw) * f001 +
+ (wu - uvw) * f101 +
+ (vw - uvw) * f011 +
+ uvw * f111
+ );
+}
+#endif
+
+/** Random binary (0,1) value. */
+inline size_t random_binary() {
+ return std::rand() % 2;
+}
+
+/** Random polar (-1,1) value. */
+inline int random_polar() {
+ return random_binary() ? 1 : -1;
+}
+
+/** Random real in [0,1]. */
+inline double random_unit() {
+ return double(std::rand()) / double(RAND_MAX);
+}
+
+/* Random integer in the range [min, max] */
+inline long random_integer(long min, long max) {
+ return min + std::rand() % (max - min + 1);
+}
+
+/* Random real number in the range [min, max] */
+template < typename T >
+T random_real(T min, T max) {
+ return min + random_unit() * (max - min);
+}
+
+/** Squared length in R2. */
+template < typename T >
+T length_squared(T x, T y) {
+ return x * x + y * y;
+}
+
+/** Squared length in R3. */
+template < typename T >
+T length_squared(T x, T y, T z) {
+ return x * x + y * y + z * z;
+}
+
+/** Length in R2. */
+template < typename T >
+T length(T x, T y) {
+ return std::sqrt(length_squared(x,y));
+}
+
+/** Length in R3. */
+template < typename T >
+T length(T x, T y, T z) {
+ return std::sqrt(length_squared(x,y,z));
+}
+
+/** Index of maximum of 3 values. */
+template < typename T >
+size_t index_of_max(T a, T b, T c) {
+ return a > b ? (c > a ? 2 : 0) : (b > c ? 1 : 2);
+}
+
+/** Index of maximum of 3 values by magnitude. */
+template < typename T >
+size_t index_of_max_abs(T a, T b, T c) {
+ return index_of_max(std::fabs(a),std::fabs(b),std::fabs(c));
+}
+
+/** Index of minimum of 3 values. */
+template < typename T >
+size_t index_of_min(T a, T b, T c) {
+ return a < b ? (c < a ? 2 : 0) : (b < c ? 1 : 2);
+}
+
+/** Index of minimum of 3 values by magnitude. */
+template < typename T >
+size_t index_of_min_abs(T a, T b, T c) {
+ return index_of_min(std::fabs(a),std::fabs(b),std::fabs(c));
+}
+
+/** Wrap input value to the range [min,max]. */
+template < typename T >
+T wrap(T value, T min, T max) {
+ max -= min;
+ value = std::fmod(value - min, max);
+ if (value < T(0)) {
+ value += max;
+ }
+ return min + value;
+}
+
+/** Convert horizontal field of view to vertical field of view. */
+template < typename T >
+T xfov_to_yfov(T xfov, T aspect) {
+ return T(2.0 * std::atan(std::tan(xfov * T(.5)) / double(aspect)));
+}
+
+/** Convert vertical field of view to horizontal field of view. */
+template < typename T >
+T yfov_to_xfov(T yfov, T aspect) {
+ return T(2.0 * std::atan(std::tan(yfov * T(.5)) * double(aspect)));
+}
+
+/** Convert horizontal zoom to vertical zoom. */
+template < typename T >
+T xzoom_to_yzoom(T xzoom, T aspect) {
+ return xzoom * aspect;
+}
+
+/** Convert vertical zoom to horizontal zoom. */
+template < typename T >
+T yzoom_to_xzoom(T yzoom, T aspect) {
+ return yzoom / aspect;
+}
+
+/** Convert zoom factor to field of view. */
+template < typename T >
+T zoom_to_fov(T zoom) {
+ return T(2) * T(std::atan(T(1) / zoom));
+}
+
+/** Convert field of view to zoom factor. */
+template < typename T >
+T fov_to_zoom(T fov) {
+ return T(1) / T(std::tan(fov * T(.5)));
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * The configurable vector<> class.
+ */
+
+#ifndef cml_vector_h
+#define cml_vector_h
+
+#include <cml/core/common.h>
+
+namespace cml {
+
+/** A configurable vector type.
+ *
+ * This class encapsulates the notion of a vector. The ArrayType template
+ * argument can be used to select the type of array to be used as internal
+ * storage for a list of type Element. The vector orientation determines
+ * how vectors are used arithmetically in expressions; i.e. a*b, when a is
+ * a row vector and b is a column vector, is the dot (inner) product, while
+ * a*b, when a is a column vector and b is a row vector, is the matrix
+ * (outer) product of a and b.
+ *
+ * @internal Unlike the previous version, this uses specializations to
+ * better enable varied array and vector types. For example, with the
+ * rebind method, it's difficult to support external<> vector types that
+ * should not be assigned to.
+ *
+ * @internal All assignments to the vector should go through UnrollAssignment,
+ * which ensures that the source expression and the destination vector have
+ * the same size. This is particularly important for dynamically-sized
+ * vectors.
+ */
+template<typename Element, class ArrayType> class vector;
+
+} // namespace cml
+
+#include <cml/core/common.h>
+#include <cml/util.h>
+
+#include <cml/vector/vector_ops.h>
+#include <cml/vector/vector_products.h>
+#include <cml/vector/vector_functions.h>
+#include <cml/vector/vector_comparison.h>
+#include <cml/vector/vector_print.h>
+
+#include <cml/vector/fixed.h>
+#include <cml/vector/dynamic.h>
+#include <cml/vector/external.h>
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Vector class operators.
+ */
+
+#ifndef vector_class_ops_h
+#define vector_class_ops_h
+
+#if defined(_MSC_VER) && _MSC_VER < 1400
+#pragma warning(disable:4003)
+// XXX Horrible hack to turn off warnings about "not enough actual params"
+// for the macros below.
+#endif
+
+/* XXX HACK!!! This is a hack to resize in the assign() functions only when
+ * auto resizing is turned off.
+ */
+#if !defined(CML_VECTOR_RESIZE_ON_ASSIGNMENT)
+#define _DO_VECTOR_SET_RESIZE(_N_) cml::et::detail::Resize(*this,_N_)
+#else
+#define _DO_VECTOR_SET_RESIZE(_N_)
+#endif
+
+/** Set a vector from 2 values. */
+#define CML_ASSIGN_VEC_2 \
+vector_type& \
+set(ELEMENT_ARG_TYPE e0, ELEMENT_ARG_TYPE e1) { \
+ _DO_VECTOR_SET_RESIZE(2); \
+ /* This is overkill, but simplifies size checking: */ \
+ value_type v[] = {e0,e1}; \
+ typedef et::OpAssign<Element,Element> OpT; \
+ cml::vector< const value_type, external<2> > src(v); \
+ et::UnrollAssignment<OpT>(*this,src); \
+ return *this; \
+}
+
+/** Set a vector from 3 values. */
+#define CML_ASSIGN_VEC_3 \
+vector_type& \
+set( \
+ ELEMENT_ARG_TYPE e0, \
+ ELEMENT_ARG_TYPE e1, \
+ ELEMENT_ARG_TYPE e2 \
+ ) \
+{ \
+ _DO_VECTOR_SET_RESIZE(3); \
+ /* This is overkill, but simplifies size checking: */ \
+ value_type v[] = {e0,e1,e2}; \
+ typedef et::OpAssign<Element,Element> OpT; \
+ cml::vector< const value_type, external<3> > src(v); \
+ et::UnrollAssignment<OpT>(*this,src); \
+ return *this; \
+}
+
+/** Create a vector from 4 values. */
+#define CML_ASSIGN_VEC_4 \
+vector_type& \
+set( \
+ ELEMENT_ARG_TYPE e0, \
+ ELEMENT_ARG_TYPE e1, \
+ ELEMENT_ARG_TYPE e2, \
+ ELEMENT_ARG_TYPE e3 \
+ ) \
+{ \
+ _DO_VECTOR_SET_RESIZE(4); \
+ /* This is overkill, but simplifies size checking: */ \
+ value_type v[] = {e0,e1,e2,e3}; \
+ typedef et::OpAssign<Element,Element> OpT; \
+ cml::vector< const value_type, external<4> > src(v); \
+ et::UnrollAssignment<OpT>(*this,src); \
+ return *this; \
+}
+
+
+/** Create a vector from 2 values. */
+#define CML_CONSTRUCT_VEC_2(_add_) \
+vector(ELEMENT_ARG_TYPE e0, ELEMENT_ARG_TYPE e1) _add_ { \
+ set(e0,e1); \
+}
+
+/** Create a vector from 3 values. */
+#define CML_CONSTRUCT_VEC_3(_add_) \
+vector( \
+ ELEMENT_ARG_TYPE e0, \
+ ELEMENT_ARG_TYPE e1, \
+ ELEMENT_ARG_TYPE e2 \
+ ) _add_ \
+{ \
+ set(e0,e1,e2); \
+}
+
+/** Create a vector from 4 values. */
+#define CML_CONSTRUCT_VEC_4(_add_) \
+vector( \
+ ELEMENT_ARG_TYPE e0, \
+ ELEMENT_ARG_TYPE e1, \
+ ELEMENT_ARG_TYPE e2, \
+ ELEMENT_ARG_TYPE e3 \
+ ) _add_ \
+{ \
+ set(e0,e1,e2,e3); \
+}
+
+/** Create a (fixed-size) N vector from an N-1-vector and a scalar. */
+#define CML_CONSTRUCT_FROM_SUBVEC(_add_) \
+vector( \
+ const subvector_type& s, \
+ ELEMENT_ARG_TYPE e \
+ ) _add_ \
+{ \
+ _DO_VECTOR_SET_RESIZE(s.size()+1); \
+ for(size_t i = 0; i < s.size(); ++ i) \
+ (*this)[i] = s[i]; \
+ (*this)[s.size()] = e; \
+}
+
+/** Copy-construct a vector from a fixed-size array of values. */
+#define CML_VEC_COPY_FROM_FIXED_ARRAY(_N_,_add_) \
+vector(const value_type v[_N_]) _add_ { \
+ typedef et::OpAssign<Element,Element> OpT; \
+ cml::vector< const value_type, external<_N_> > src(v); \
+ et::UnrollAssignment<OpT>(*this,src); \
+}
+
+/** Copy-construct a vector from a runtime-sized array of values. */
+#define CML_VEC_COPY_FROM_ARRAY(_add_) \
+vector(const value_type* const v, size_t N) _add_ { \
+ typedef et::OpAssign<Element,Element> OpT; \
+ cml::vector<const value_type, external<> > src(v,N); \
+ et::UnrollAssignment<OpT>(*this,src); \
+}
+
+/** Copy-construct a vector.
+ *
+ * @internal This is required for GCC4, since it won't elide the default
+ * copy constructor.
+ */
+#define CML_VEC_COPY_FROM_VECTYPE(_add_) \
+vector(const vector_type& v) _add_ { \
+ typedef et::OpAssign<Element,Element> OpT; \
+ et::UnrollAssignment<OpT>(*this,v); \
+}
+
+/** Construct from an arbitrary vector.
+ *
+ * @param v the vector to copy from.
+ */
+#define CML_VEC_COPY_FROM_VEC \
+template<typename E, class AT> \
+vector(const vector<E,AT>& m) { \
+ typedef et::OpAssign<Element,E> OpT; \
+ et::UnrollAssignment<OpT>(*this,m); \
+}
+
+/** Construct from a vector expression.
+ *
+ * @param expr the expression to copy from.
+ */
+#define CML_VEC_COPY_FROM_VECXPR \
+template<class XprT> \
+vector(VECXPR_ARG_TYPE e) { \
+ /* Verify that a promotion exists at compile time: */ \
+ typedef typename et::VectorPromote< \
+ vector_type, typename XprT::result_type>::type result_type; \
+ typedef typename XprT::value_type src_value_type; \
+ typedef et::OpAssign<Element,src_value_type> OpT; \
+ et::UnrollAssignment<OpT>(*this,e); \
+}
+
+/** Assign from the same vector type.
+ *
+ * @param v the vector to copy from.
+ */
+#define CML_VEC_ASSIGN_FROM_VECTYPE \
+vector_type& operator=(const vector_type& v) { \
+ typedef et::OpAssign<Element,Element> OpT; \
+ et::UnrollAssignment<OpT>(*this,v); \
+ return *this; \
+}
+
+/** Assign this vector from another using the given elementwise op.
+ *
+ * This allows assignment from arbitrary vector types.
+ *
+ * @param _op_ the operator (e.g. +=)
+ * @param _op_name_ the op functor (e.g. et::OpAssign)
+ */
+#define CML_VEC_ASSIGN_FROM_VEC(_op_, _op_name_) \
+template<typename E, class AT> vector_type& \
+operator _op_ (const cml::vector<E,AT>& m) { \
+ typedef _op_name_ <Element,E> OpT; \
+ cml::et::UnrollAssignment<OpT>(*this,m); \
+ return *this; \
+}
+
+/** Declare a function to assign this vector from a vector expression.
+ *
+ * @param _op_ the operator (e.g. +=)
+ * @param _op_name_ the op functor (e.g. et::OpAssign)
+ */
+#define CML_VEC_ASSIGN_FROM_VECXPR(_op_, _op_name_) \
+template<class XprT> vector_type& \
+operator _op_ (VECXPR_ARG_TYPE e) { \
+ /* Verify that a promotion exists at compile time: */ \
+ typedef typename et::VectorPromote< \
+ vector_type, typename XprT::result_type>::type result_type; \
+ typedef typename XprT::value_type src_value_type; \
+ typedef _op_name_ <Element,src_value_type> OpT; \
+ cml::et::UnrollAssignment<OpT>(*this,e); \
+ return *this; \
+}
+
+/** Declare a function to assign this vector from a scalar.
+ *
+ * @param _op_ the operator (e.g. *=)
+ * @param _op_name_ the op functor (e.g. et::OpAssign)
+ *
+ * @internal This shouldn't be used for ops, like +=, which aren't
+ * defined in vector algebra.
+ */
+#define CML_VEC_ASSIGN_FROM_SCALAR(_op_, _op_name_) \
+vector_type& operator _op_ (ELEMENT_ARG_TYPE s) { \
+ typedef _op_name_ <Element,Element> OpT; \
+ cml::et::UnrollAssignment<OpT>(*this,s); \
+ return *this; \
+}
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Specialization for resizeable, dynamic-memory vector.
+ */
+
+#ifndef dynamic_vector_h
+#define dynamic_vector_h
+
+#include <cml/core/dynamic_1D.h>
+#include <cml/vector/vector_expr.h>
+#include <cml/vector/class_ops.h>
+#include <cml/vector/vector_unroller.h>
+
+namespace cml {
+
+/** Resizeable, dynamic-memory vector. */
+template<typename Element, typename Alloc>
+class vector< Element, dynamic<Alloc> >
+: public dynamic_1D<Element,Alloc>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef dynamic<> storage_type;
+ typedef dynamic<Alloc> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef dynamic_1D<Element,Alloc> array_type;
+
+ /* Shorthand for the type of this vector: */
+ typedef vector<Element,generator_type> vector_type;
+
+ /* For integration into the expression template code: */
+ typedef vector_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef vector_type temporary_type;
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ /* For integration into the expression templates code: */
+ typedef vector_type& expr_reference;
+ typedef const vector_type& expr_const_reference;
+
+ /* For matching by storage type: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef typename array_type::resizing_tag resizing_tag;
+
+ /* For matching by result-type: */
+ typedef cml::et::vector_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Return square of the length. */
+ value_type length_squared() const {
+ return cml::dot(*this,*this);
+ }
+
+ /** Return the length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Normalize the vector. */
+ vector_type& normalize() {
+ return (*this /= length());
+ }
+
+ /** Set this vector to [0]. */
+ vector_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this vector to a cardinal vector. */
+ vector_type& cardinal(size_t i) {
+ zero();
+ (*this)[i] = Element(1);
+ return *this;
+ }
+
+ /** Pairwise minimum of this vector with another. */
+ template<typename E, class AT>
+ void minimize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::min((*this)[i],v[i]);
+ }
+ }
+
+ /** Pairwise maximum of this vector with another. */
+ template<typename E, class AT>
+ void maximize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::max((*this)[i],v[i]);
+ }
+ }
+
+ /** Fill vector with random elements. */
+ void random(value_type min, value_type max) {
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = cml::random_real(min,max);
+ }
+ }
+
+
+ public:
+
+ /** Default constructor. */
+ vector() : array_type() {}
+
+ /** Construct given array size. */
+ vector(size_t N) : array_type(N) {}
+
+
+ public:
+
+ /* Define common class operators: */
+
+ CML_CONSTRUCT_VEC_2(: array_type())
+ CML_CONSTRUCT_VEC_3(: array_type())
+ CML_CONSTRUCT_VEC_4(: array_type())
+
+ CML_VEC_COPY_FROM_ARRAY(: array_type())
+ CML_VEC_COPY_FROM_VECTYPE(: array_type())
+ CML_VEC_COPY_FROM_VEC
+ CML_VEC_COPY_FROM_VECXPR
+
+ CML_ASSIGN_VEC_2
+ CML_ASSIGN_VEC_3
+ CML_ASSIGN_VEC_4
+
+ CML_VEC_ASSIGN_FROM_VECTYPE
+
+ CML_VEC_ASSIGN_FROM_VEC(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VEC(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VEC(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_VECXPR(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_SCALAR(*=, cml::et::OpMulAssign)
+ CML_VEC_ASSIGN_FROM_SCALAR(/=, cml::et::OpDivAssign)
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Specializations for external-memory vectors.
+ *
+ * @note Copy-constructing one external<> vector from another is not
+ * supported, since an external<> vector is essentially a wrapper for a
+ * pointer and has no allocated storage of its own.
+ */
+
+#ifndef external_vector_h
+#define external_vector_h
+
+#include <cml/core/external_1D.h>
+#include <cml/vector/vector_expr.h>
+#include <cml/vector/class_ops.h>
+#include <cml/vector/vector_unroller.h>
+#include <cml/vector/dynamic.h>
+
+namespace cml {
+
+/** Fixed-size, fixed-memory vector. */
+template<typename Element, int Size>
+class vector< Element, external<Size> >
+: public external_1D<Element,Size>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef external<> storage_type;
+ typedef external<Size> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef external_1D<Element,Size> array_type;
+
+ /* Shorthand for the type of this vector: */
+ typedef vector<Element,generator_type> vector_type;
+
+ /* For integration into the expression template code: */
+ typedef vector_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef vector< Element,fixed<Size> > temporary_type;
+ typedef typename temporary_type::subvector_type subvector_type;
+ /* Note: this ensures that an external vector is copied into the proper
+ * temporary; external<> temporaries are not allowed.
+ */
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ /* For integration into the expression templates code: */
+ typedef vector_type& expr_reference;
+ typedef const vector_type& expr_const_reference;
+
+ /* For matching by storage type: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by result-type: */
+ typedef cml::et::vector_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Return square of the length. */
+ value_type length_squared() const {
+ return cml::dot(*this,*this);
+ }
+
+ /** Return the length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Normalize the vector. */
+ vector_type& normalize() {
+ return (*this /= length());
+ }
+
+ /** Set this vector to [0]. */
+ vector_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this vector to a cardinal vector. */
+ vector_type& cardinal(size_t i) {
+ zero();
+ (*this)[i] = Element(1);
+ return *this;
+ }
+
+ /** Pairwise minimum of this vector with another. */
+ template<typename E, class AT>
+ void minimize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::min((*this)[i],v[i]);
+ }
+ }
+
+ /** Pairwise maximum of this vector with another. */
+ template<typename E, class AT>
+ void maximize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::max((*this)[i],v[i]);
+ }
+ }
+
+ /** Fill vector with random elements. */
+ void random(value_type min, value_type max) {
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = cml::random_real(min,max);
+ }
+ }
+
+
+ public:
+
+ /** Construct from an array of values. */
+ vector(Element* const array) : array_type(array) {}
+
+
+ public:
+
+ CML_ASSIGN_VEC_2
+ CML_ASSIGN_VEC_3
+ CML_ASSIGN_VEC_4
+
+ CML_VEC_ASSIGN_FROM_VECTYPE
+
+ /* Only assignment operators can be used to copy from other types: */
+ CML_VEC_ASSIGN_FROM_VEC(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VEC(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VEC(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_VECXPR(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_SCALAR(*=, cml::et::OpMulAssign)
+ CML_VEC_ASSIGN_FROM_SCALAR(/=, cml::et::OpDivAssign)
+};
+
+/** Run-time sized vector. */
+template<typename Element>
+class vector< Element, external<> >
+: public external_1D<Element>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef external<> storage_type;
+ typedef external<> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef external_1D<Element> array_type;
+
+ /* Shorthand for the type of this vector: */
+ typedef vector<Element,generator_type> vector_type;
+
+ /* For integration into the expression template code: */
+ typedef vector_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef vector< Element, dynamic<> > temporary_type;
+ /* Note: this ensures that an external vector is copied into the proper
+ * temporary; external<> temporaries are not allowed.
+ */
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ /* For integration into the expression templates code: */
+ typedef vector_type& expr_reference;
+ typedef const vector_type& expr_const_reference;
+
+ /* For matching by storage type: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by resizability: */
+ typedef typename array_type::resizing_tag resizing_tag;
+
+ /* For matching by result-type: */
+ typedef cml::et::vector_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Return square of the length. */
+ value_type length_squared() const {
+ return dot(*this,*this);
+ }
+
+ /** Return the length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Normalize the vector. */
+ vector_type& normalize() {
+ return (*this /= length());
+ }
+
+ /** Set this vector to [0]. */
+ vector_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this vector to a cardinal vector. */
+ vector_type& cardinal(size_t i) {
+ zero();
+ (*this)[i] = Element(1);
+ return *this;
+ }
+
+ /** Pairwise minimum of this vector with another. */
+ template<typename E, class AT>
+ void minimize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::min((*this)[i],v[i]);
+ }
+ }
+
+ /** Pairwise maximum of this vector with another. */
+ template<typename E, class AT>
+ void maximize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::max((*this)[i],v[i]);
+ }
+ }
+
+ /** Fill vector with random elements. */
+ void random(value_type min, value_type max) {
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = random_real(min,max);
+ }
+ }
+
+
+ public:
+
+ /** Construct from an array of values and the size. */
+ vector(Element* const array, size_t size)
+ : array_type(array, size) {}
+
+
+ public:
+
+ /* Define class operators for external vectors. Note: external vectors
+ * cannot be copy-constructed, but they can be assigned to:
+ */
+ CML_ASSIGN_VEC_2
+ CML_ASSIGN_VEC_3
+ CML_ASSIGN_VEC_4
+
+ CML_VEC_ASSIGN_FROM_VECTYPE
+
+ /* Only assignment operators can be used to copy from other types: */
+ CML_VEC_ASSIGN_FROM_VEC(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VEC(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VEC(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_VECXPR(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_SCALAR(*=, cml::et::OpMulAssign)
+ CML_VEC_ASSIGN_FROM_SCALAR(/=, cml::et::OpDivAssign)
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Specialization for fixed-size, fixed-memory vectors.
+ */
+
+#ifndef fixed_vector_h
+#define fixed_vector_h
+
+#include <cml/core/fixed_1D.h>
+#include <cml/vector/vector_expr.h>
+#include <cml/vector/class_ops.h>
+#include <cml/vector/vector_unroller.h>
+#include <cml/vector/external.h>
+#include <cml/util.h>
+
+namespace cml {
+
+/** Fixed-size, fixed-memory vector. */
+template<typename Element, int Size>
+class vector< Element, fixed<Size> >
+: public fixed_1D<Element,Size>
+{
+ public:
+
+ /* Shorthand for the generator: */
+ typedef fixed<> storage_type;
+ typedef fixed<Size> generator_type;
+
+ /* Shorthand for the array type: */
+ typedef fixed_1D<Element,Size> array_type;
+
+ /* Shorthand for the type of this vector: */
+ typedef vector<Element,generator_type> vector_type;
+
+ /* For integration into the expression template code: */
+ typedef vector_type expr_type;
+
+ /* For integration into the expression template code: */
+ typedef vector_type temporary_type;
+ typedef vector< Element, fixed<Size-1> > subvector_type;
+
+ /* Standard: */
+ typedef typename array_type::value_type value_type;
+ typedef typename array_type::reference reference;
+ typedef typename array_type::const_reference const_reference;
+
+ /* For integration into the expression templates code: */
+ typedef vector_type& expr_reference;
+ typedef const vector_type& expr_const_reference;
+
+ /* For matching by storage type: */
+ typedef typename array_type::memory_tag memory_tag;
+
+ /* For matching by size type: */
+ typedef typename array_type::size_tag size_tag;
+
+ /* For matching by result-type: */
+ typedef cml::et::vector_result_tag result_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::assignable_tag assignable_tag;
+
+
+ public:
+
+ /** Return square of the length. */
+ value_type length_squared() const {
+ return cml::dot(*this,*this);
+ }
+
+ /** Return the length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Normalize the vector. */
+ vector_type& normalize() {
+ return (*this /= length());
+ }
+
+ /** Set this vector to [0]. */
+ vector_type& zero() {
+ typedef cml::et::OpAssign<Element,Element> OpT;
+ cml::et::UnrollAssignment<OpT>(*this,Element(0));
+ return *this;
+ }
+
+ /** Set this vector to a cardinal vector. */
+ vector_type& cardinal(size_t i) {
+ zero();
+ (*this)[i] = Element(1);
+ return *this;
+ }
+
+ /** Pairwise minimum of this vector with another. */
+ template<typename E, class AT>
+ void minimize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::min((*this)[i],v[i]);
+ }
+ }
+
+ /** Pairwise maximum of this vector with another. */
+ template<typename E, class AT>
+ void maximize(const vector<E,AT>& v) {
+ /* XXX This should probably use ScalarPromote: */
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = std::max((*this)[i],v[i]);
+ }
+ }
+
+ /** Fill vector with random elements. */
+ void random(value_type min, value_type max) {
+ for (size_t i = 0; i < this->size(); ++i) {
+ (*this)[i] = cml::random_real(min,max);
+ }
+ }
+
+
+ public:
+
+ vector() : array_type() {}
+
+
+ public:
+
+ /* Define common class operators: */
+
+ CML_CONSTRUCT_VEC_2(/**/)
+ CML_CONSTRUCT_VEC_3(/**/)
+ CML_CONSTRUCT_VEC_4(/**/)
+
+ CML_CONSTRUCT_FROM_SUBVEC(/**/)
+
+ CML_VEC_COPY_FROM_FIXED_ARRAY(array_type::array_size,/**/)
+ CML_VEC_COPY_FROM_VECTYPE(: array_type())
+ CML_VEC_COPY_FROM_VEC
+ CML_VEC_COPY_FROM_VECXPR
+
+ CML_ASSIGN_VEC_2
+ CML_ASSIGN_VEC_3
+ CML_ASSIGN_VEC_4
+
+ CML_VEC_ASSIGN_FROM_VECTYPE
+
+ CML_VEC_ASSIGN_FROM_VEC(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VEC(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VEC(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_VECXPR(=, cml::et::OpAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(+=, cml::et::OpAddAssign)
+ CML_VEC_ASSIGN_FROM_VECXPR(-=, cml::et::OpSubAssign)
+
+ CML_VEC_ASSIGN_FROM_SCALAR(*=, cml::et::OpMulAssign)
+ CML_VEC_ASSIGN_FROM_SCALAR(/=, cml::et::OpDivAssign)
+};
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines the various combinations of vector expressions.
+ *
+ * Create unary and binary operators with macros. The available combinations
+ * are:
+ *
+ * Unary expressions:
+ *
+ * op Vector -> Vector
+ * op VecXpr -> VecXpr
+ *
+ * Binary expressions:
+ *
+ * Vector op Vector -> Vector
+ * VecXpr op Vector -> VecXpr
+ * Vector op VecXpr -> VecXpr
+ * VecXpr op VecXpr -> VecXpr
+ *
+ * Vector op Scalar -> Vector
+ * Scalar op Vector -> Vector
+ * VecXpr op Scalar -> VecXpr
+ * Scalar op VecXpr -> VecXpr
+ *
+ * All of the generator functions compress the expression tree by hoisting
+ * subexpressions into the containing expression. This has the effect of
+ * forcing only the root node of the expression tree to be a VectorXpr.
+ * Every other node is a Unary or BinaryVectorOp.
+ *
+ * @todo Should ScalarT in expressions be passed by reference or by value?
+ */
+
+#ifndef vecop_macros_h
+#define vecop_macros_h
+
+/** Declare a unary operator taking a vector operand. */
+#define CML_VEC_UNIOP(_op_, _OpT_) \
+template<typename E, class AT> \
+inline et::VectorXpr< \
+ et::UnaryVectorOp< vector<E,AT>, _OpT_ <E> > \
+> \
+ \
+_op_ (const vector<E,AT>& arg) \
+{ \
+ typedef et::UnaryVectorOp< \
+ vector<E,AT>, _OpT_ <E> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(arg)); \
+}
+
+
+/** Declare a unary operator taking a et::VectorXpr operand. */
+#define CML_VECXPR_UNIOP(_op_, _OpT_) \
+template<class XprT> \
+inline et::VectorXpr< \
+ et::UnaryVectorOp< XprT, _OpT_ <typename XprT::value_type> > \
+> \
+ \
+_op_ (VECXPR_ARG_TYPE arg) \
+{ \
+ typedef et::UnaryVectorOp< \
+ XprT, _OpT_ <typename XprT::value_type> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(arg.expression())); \
+}
+
+
+/** Declare an operator taking two vector operands. */
+#define CML_VEC_VEC_BINOP(_op_, _OpT_) \
+template<typename E1, class AT1, typename E2, class AT2> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ vector<E1,AT1>, vector<E2,AT2>, _OpT_ <E1,E2> \
+ > \
+> \
+ \
+_op_ ( \
+ const vector<E1,AT1>& left, \
+ const vector<E2,AT2>& right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ vector<E1,AT1>, vector<E2,AT2>, _OpT_ <E1,E2> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(left,right)); \
+}
+
+
+/** Declare an operator taking a vector and a et::VectorXpr. */
+#define CML_VEC_VECXPR_BINOP(_op_, _OpT_) \
+template<typename E, class AT, class XprT> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ vector<E,AT>, XprT, _OpT_ <E, typename XprT::value_type> \
+ > \
+> \
+ \
+_op_ ( \
+ const vector<E,AT>& left, \
+ VECXPR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ vector<E,AT>, XprT, \
+ _OpT_ <E, typename XprT::value_type> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(left,right.expression())); \
+}
+
+
+/** Declare an operator taking an et::VectorXpr and a vector. */
+#define CML_VECXPR_VEC_BINOP(_op_, _OpT_) \
+template<class XprT, typename E, class AT> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ XprT, vector<E,AT>, _OpT_ <typename XprT::value_type, E> \
+ > \
+> \
+ \
+_op_ ( \
+ VECXPR_ARG_TYPE left, \
+ const vector<E,AT>& right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ XprT, vector<E,AT>, \
+ _OpT_ <typename XprT::value_type, E> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(left.expression(),right)); \
+}
+
+
+/** Declare an operator taking two et::VectorXpr operands. */
+#define CML_VECXPR_VECXPR_BINOP(_op_, _OpT_) \
+template<class XprT1, class XprT2> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ XprT1, XprT2, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type \
+ > \
+ > \
+> \
+ \
+_op_ ( \
+ VECXPR_ARG_TYPE_N(1) left, \
+ VECXPR_ARG_TYPE_N(2) right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ XprT1, XprT2, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>( \
+ ExprT(left.expression(),right.expression())); \
+}
+
+
+/** Declare an operator taking a vector and a scalar. */
+#define CML_VEC_SCALAR_BINOP(_op_, _OpT_) \
+template<typename E, class AT, typename ScalarT> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ vector<E,AT>, ScalarT, _OpT_ <E,ScalarT> \
+ > \
+> \
+ \
+_op_ ( \
+ const vector<E,AT>& left, \
+ SCALAR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ vector<E,AT>, ScalarT, _OpT_ <E,ScalarT> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(left,right)); \
+}
+
+
+/** Declare an operator taking a scalar and a vector. */
+#define CML_SCALAR_VEC_BINOP(_op_, _OpT_) \
+template<typename ScalarT, typename E, class AT> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ ScalarT, vector<E,AT>, _OpT_ <ScalarT,E> \
+ > \
+> \
+ \
+_op_ ( \
+ SCALAR_ARG_TYPE left, \
+ const vector<E,AT>& right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ ScalarT, vector<E,AT>, _OpT_ <ScalarT,E> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(left,right)); \
+}
+
+
+/** Declare an operator taking a et::VectorXpr and a scalar. */
+#define CML_VECXPR_SCALAR_BINOP(_op_, _OpT_) \
+template<class XprT, typename ScalarT> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ XprT, ScalarT, _OpT_ <typename XprT::value_type,ScalarT> \
+ > \
+> \
+ \
+_op_ ( \
+ VECXPR_ARG_TYPE left, \
+ SCALAR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ XprT, ScalarT, _OpT_ <typename XprT::value_type,ScalarT> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(left.expression(),right)); \
+}
+
+
+/** Declare an operator taking a scalar and a et::VectorXpr. */
+#define CML_SCALAR_VECXPR_BINOP(_op_, _OpT_) \
+template<typename ScalarT, class XprT> \
+inline et::VectorXpr< \
+ et::BinaryVectorOp< \
+ ScalarT, XprT, _OpT_ <ScalarT, typename XprT::value_type> \
+ > \
+> \
+ \
+_op_ ( \
+ SCALAR_ARG_TYPE left, \
+ VECXPR_ARG_TYPE right) \
+{ \
+ typedef et::BinaryVectorOp< \
+ ScalarT, XprT, \
+ _OpT_ <ScalarT, typename XprT::value_type> \
+ > ExprT; \
+ return et::VectorXpr<ExprT>(ExprT(left,right.expression())); \
+}
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_comparison_h
+#define vector_comparison_h
+
+#include <cml/core/cml_assert.h>
+#include <cml/et/size_checking.h>
+#include <cml/et/scalar_ops.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * vector_comparison is not provided with vector or VectorExpr arguments:
+ */
+struct vector_comparison_expects_vector_args_error;
+
+#define CML_VEC_VEC_ORDER(_order_, _op_, _OpT_) \
+template<typename E1, class AT1, typename E2, class AT2> \
+inline bool \
+_op_ ( \
+ const vector<E1,AT1>& left, \
+ const vector<E2,AT2>& right) \
+{ \
+ return detail::vector_##_order_ (left, right, _OpT_ <E1,E2>()); \
+}
+
+#define CML_VEC_VECXPR_ORDER(_order_, _op_, _OpT_) \
+template<typename E, class AT, class XprT> \
+inline bool \
+_op_ ( \
+ const vector<E,AT>& left, \
+ VECXPR_ARG_TYPE right) \
+{ \
+ return detail::vector_##_order_ (left, right, \
+ _OpT_ <E, typename XprT::value_type>()); \
+}
+
+#define CML_VECXPR_VEC_ORDER(_order_, _op_, _OpT_) \
+template<class XprT, typename E, class AT> \
+inline bool \
+_op_ ( \
+ VECXPR_ARG_TYPE left, \
+ const vector<E,AT>& right) \
+{ \
+ return detail::vector_##_order_ (left, right, \
+ _OpT_ <typename XprT::value_type, E>()); \
+}
+
+#define CML_VECXPR_VECXPR_ORDER(_order_, _op_, _OpT_) \
+template<class XprT1, class XprT2> \
+inline bool \
+_op_ ( \
+ VECXPR_ARG_TYPE_N(1) left, \
+ VECXPR_ARG_TYPE_N(2) right) \
+{ \
+ return detail::vector_##_order_ (left, right, \
+ _OpT_ < \
+ typename XprT1::value_type, \
+ typename XprT2::value_type>()); \
+}
+
+
+namespace cml {
+namespace detail {
+
+/** Vector strict weak ordering relationship.
+ *
+ * OpT must implement a strict weak order on the vector element type.
+ * operator< and operator> on integer and floating-point types are
+ * examples.
+ */
+template<typename LeftT, typename RightT, typename OpT>
+inline bool
+vector_weak_order(const LeftT& left, const RightT& right, OpT)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+
+ /* vector_comparison() requires vector expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::VectorExpressions<LeftT,RightT>::is_true),
+ vector_comparison_expects_vector_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas:
+ */
+
+ typedef typename et::VectorPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::type result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* Verify expression size: */
+ ssize_t N = (ssize_t) et::CheckedSize(left,right,size_tag());
+ for(ssize_t i = 0; i < N; ++ i) {
+ if(OpT().apply(
+ left_traits().get(left,i),
+ right_traits().get(right,i)
+ ))
+ {
+ /* If weak order (a < b) is satisfied, return true: */
+ return true;
+ } else if(OpT().apply(
+ right_traits().get(right,i),
+ left_traits().get(left,i)
+ ))
+ {
+ /* If !(b < a), then return false: */
+ return false;
+ } else {
+
+ /* Have !(a < b) && !(b < a) <=> (a >= b && b >= a) <=> (a == b).
+ * so need to test next element:
+ */
+ continue;
+ }
+ }
+ /* XXX Can this be unrolled in any reasonable way? */
+
+ /* If we get here, then left == right: */
+ return false;
+}
+
+/** Vector total order relationship.
+ *
+ * OpT must implement a total order on the vector element type. operator<=
+ * and operator>= on integer and floating-point types are examples.
+ */
+template<typename LeftT, typename RightT, typename OpT>
+inline bool
+vector_total_order(const LeftT& left, const RightT& right, OpT)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+
+ /* vector_comparison() requires vector expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::VectorExpressions<LeftT,RightT>::is_true),
+ vector_comparison_expects_vector_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas:
+ */
+
+ typedef typename et::VectorPromote<
+ typename left_traits::result_type,
+ typename right_traits::result_type
+ >::type result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* Verify expression size: */
+ ssize_t N = (ssize_t) et::CheckedSize(left,right,size_tag());
+ for(ssize_t i = 0; i < N; ++ i) {
+
+ /* Test total order: */
+ if(OpT().apply(
+ left_traits().get(left,i),
+ right_traits().get(right,i)
+ ))
+ {
+ /* Automatically true if weak order (a <= b) && !(b <= a) <=>
+ * (a <= b) && (b > a) <=> (a < b) is satisfied:
+ */
+ if(!OpT().apply(
+ right_traits().get(right,i),
+ left_traits().get(left,i)
+ ))
+ return true;
+
+ /* Otherwise, have equality (a <= b) && (b <= a), so continue
+ * to next element:
+ */
+ else
+ continue;
+
+ } else {
+
+ /* Total order isn't satisfied (a > b), so return false: */
+ return false;
+ }
+ }
+ /* XXX Can this be unrolled in any reasonable way? */
+
+ /* Total (==) or weak (<) order was satisfied, so return true: */
+ return true;
+}
+
+}
+
+/* XXX There is a better way to handle these with operator traits... */
+
+CML_VEC_VEC_ORDER( total_order, operator==, et::OpEqual)
+CML_VECXPR_VEC_ORDER( total_order, operator==, et::OpEqual)
+CML_VEC_VECXPR_ORDER( total_order, operator==, et::OpEqual)
+CML_VECXPR_VECXPR_ORDER( total_order, operator==, et::OpEqual)
+
+CML_VEC_VEC_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_VECXPR_VEC_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_VEC_VECXPR_ORDER( weak_order, operator!=, et::OpNotEqual)
+CML_VECXPR_VECXPR_ORDER( weak_order, operator!=, et::OpNotEqual)
+
+CML_VEC_VEC_ORDER( weak_order, operator<, et::OpLess)
+CML_VECXPR_VEC_ORDER( weak_order, operator<, et::OpLess)
+CML_VEC_VECXPR_ORDER( weak_order, operator<, et::OpLess)
+CML_VECXPR_VECXPR_ORDER( weak_order, operator<, et::OpLess)
+
+CML_VEC_VEC_ORDER( weak_order, operator>, et::OpGreater)
+CML_VECXPR_VEC_ORDER( weak_order, operator>, et::OpGreater)
+CML_VEC_VECXPR_ORDER( weak_order, operator>, et::OpGreater)
+CML_VECXPR_VECXPR_ORDER( weak_order, operator>, et::OpGreater)
+
+CML_VEC_VEC_ORDER( total_order, operator<=, et::OpLessEqual)
+CML_VECXPR_VEC_ORDER( total_order, operator<=, et::OpLessEqual)
+CML_VEC_VECXPR_ORDER( total_order, operator<=, et::OpLessEqual)
+CML_VECXPR_VECXPR_ORDER( total_order, operator<=, et::OpLessEqual)
+
+CML_VEC_VEC_ORDER( total_order, operator>=, et::OpGreaterEqual)
+CML_VECXPR_VEC_ORDER( total_order, operator>=, et::OpGreaterEqual)
+CML_VEC_VECXPR_ORDER( total_order, operator>=, et::OpGreaterEqual)
+CML_VECXPR_VECXPR_ORDER( total_order, operator>=, et::OpGreaterEqual)
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Vector linear expression classes.
+ */
+
+#ifndef vector_expr_h
+#define vector_expr_h
+
+#include <cmath>
+#include <cml/et/size_checking.h>
+#include <cml/vector/vector_traits.h>
+#include <cml/vector/vector_promotions.h>
+
+/* XXX Don't know which it should be just yet, since RVO seems to obviate need
+ * for a reference type. However, copy by value copies the *entire expression
+ * tree rooted at the VectorXpr<>, so this choice is bound to affect
+ * performace for some compiler or another:
+ */
+#define VECXPR_ARG_TYPE const et::VectorXpr<XprT>&
+#define VECXPR_ARG_TYPE_N(_N_) const et::VectorXpr<XprT##_N_>&
+
+//#define VECXPR_ARG_TYPE const et::VectorXpr<XprT>
+//#define VECXPR_ARG_TYPE_N(_N_) const et::VectorXpr<XprT##_N_>
+
+namespace cml {
+namespace et {
+
+/** A placeholder for a vector expression in an expression tree. */
+template<class ExprT>
+class VectorXpr
+{
+ public:
+
+ typedef VectorXpr<ExprT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef typename ExprT::expr_ary expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename ExprT::value_type value_type;
+ typedef vector_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Get the reference type: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type: */
+ typedef typename expr_traits::result_type result_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = ExprT::array_size };
+
+
+ public:
+
+ /** Return square of the length. */
+ value_type length_squared() const {
+ return m_expr.length_squared();
+ }
+
+ /** Return the length. */
+ value_type length() const {
+ return m_expr.length();
+ }
+
+ /** Return the result as a normalized vector. */
+ result_type normalize() const {
+ return m_expr.normalize();
+ }
+
+ /** Compute value at index i of the result vector. */
+ value_type operator[](size_t i) const {
+ return m_expr[i];
+ }
+
+
+ public:
+
+ /** Return size of this expression (same as subexpression's size). */
+ size_t size() const {
+ return m_expr.size();
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+
+ public:
+
+ /** Construct from the subexpression to store. */
+ explicit VectorXpr(expr_reference expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ VectorXpr(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for VectorXpr<>. */
+template<class ExprT>
+struct ExprTraits< VectorXpr<ExprT> >
+{
+ typedef VectorXpr<ExprT> expr_type;
+ typedef ExprT arg_type;
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+
+/** A unary vector expression.
+ *
+ * The operator's operator() method must take exactly one argument.
+ */
+template<class ExprT, class OpT>
+class UnaryVectorOp
+{
+ public:
+
+ typedef UnaryVectorOp<ExprT,OpT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef unary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename OpT::value_type value_type;
+ typedef vector_result_tag result_tag;
+ typedef typename ExprT::size_tag size_tag;
+
+ /* Store the expression traits for the subexpression: */
+ typedef ExprTraits<ExprT> expr_traits;
+
+ /* Reference type for the subexpression: */
+ typedef typename expr_traits::const_reference expr_reference;
+
+ /* Get the result type (same as for subexpression): */
+ typedef typename expr_traits::result_type result_type;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+
+ public:
+
+ /** Record result size as an enum. */
+ enum { array_size = ExprT::array_size };
+
+
+ public:
+
+ /** Return square of the length. */
+ value_type length_squared() const {
+ return dot(
+ VectorXpr<expr_type>(*this),
+ VectorXpr<expr_type>(*this));
+ }
+
+ /** Return the length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Return the result as a normalized vector. */
+ result_type normalize() const {
+ result_type v(VectorXpr<expr_type>(*this));
+ return v.normalize();
+ }
+
+ /** Compute value at index i of the result vector. */
+ value_type operator[](size_t i) const {
+
+ /* This uses the expression traits to figure out how to access the
+ * i'th index of the subexpression:
+ */
+ return OpT().apply(expr_traits().get(m_expr,i));
+ }
+
+
+ public:
+
+ /** Return size of this expression (same as argument's size). */
+ size_t size() const {
+ return m_expr.size();
+ }
+
+ /** Return reference to contained expression. */
+ expr_reference expression() const { return m_expr; }
+
+
+ public:
+
+ /** Construct from the subexpression. */
+ explicit UnaryVectorOp(expr_reference expr) : m_expr(expr) {}
+
+ /** Copy constructor. */
+ UnaryVectorOp(const expr_type& e) : m_expr(e.m_expr) {}
+
+
+ protected:
+
+ expr_reference m_expr;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for UnaryVectorOp<>. */
+template<class ExprT, class OpT>
+struct ExprTraits< UnaryVectorOp<ExprT,OpT> >
+{
+ typedef UnaryVectorOp<ExprT,OpT> expr_type;
+ typedef ExprT arg_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+
+/** A binary vector expression.
+ *
+ * The operator's operator() method must take exactly two arguments.
+ */
+template<class LeftT, class RightT, class OpT>
+class BinaryVectorOp
+{
+ public:
+
+ typedef BinaryVectorOp<LeftT,RightT,OpT> expr_type;
+
+ /* Record ary-ness of the expression: */
+ typedef binary_expression expr_ary;
+
+ /* Copy the expression by value into higher-up expressions: */
+ typedef expr_type expr_const_reference;
+
+ typedef typename OpT::value_type value_type;
+ typedef vector_result_tag result_tag;
+
+ /* Store the expression traits types for the two subexpressions: */
+ typedef ExprTraits<LeftT> left_traits;
+ typedef ExprTraits<RightT> right_traits;
+
+ /* Reference types for the two subexpressions: */
+ typedef typename left_traits::const_reference left_reference;
+ typedef typename right_traits::const_reference right_reference;
+
+ /* Figure out the expression's resulting (vector) type: */
+ typedef typename left_traits::result_type left_result;
+ typedef typename right_traits::result_type right_result;
+ typedef typename VectorPromote<left_result,right_result>::type result_type;
+ typedef typename result_type::size_tag size_tag;
+
+ /* For matching by assignability: */
+ typedef cml::et::not_assignable_tag assignable_tag;
+
+ /* Get the temporary type: */
+ typedef typename result_type::temporary_type temporary_type;
+
+ /* Define a size checker: */
+ typedef GetCheckedSize<LeftT,RightT,size_tag> checked_size;
+
+
+ public:
+
+ /** Record result size as an enum (if applicable). */
+ enum { array_size = result_type::array_size };
+
+
+ public:
+
+ /** Return square of the length. */
+ value_type length_squared() const {
+ return dot(
+ VectorXpr<expr_type>(*this),
+ VectorXpr<expr_type>(*this));
+ }
+
+ /** Return the length. */
+ value_type length() const {
+ return std::sqrt(length_squared());
+ }
+
+ /** Return the result as a normalized vector. */
+ result_type normalize() const {
+ result_type v(VectorXpr<expr_type>(*this));
+ return v.normalize();
+ }
+
+ /** Compute value at index i of the result vector. */
+ value_type operator[](size_t i) const {
+
+ /* This uses the expression traits to figure out how to access the
+ * i'th index of the two subexpressions:
+ */
+ return OpT().apply(
+ left_traits().get(m_left,i),
+ right_traits().get(m_right,i));
+ }
+
+
+ public:
+
+ /** Return the size of the vector result.
+ *
+ * @throws std::invalid_argument if the expressions do not have the same
+ * size.
+ */
+ size_t size() const {
+ /* Note: This actually does a check only if
+ * CML_CHECK_VECTOR_EXPR_SIZES is set:
+ */
+ return CheckedSize(m_left,m_right,size_tag());
+ }
+
+ /** Return reference to left expression. */
+ left_reference left_expression() const { return m_left; }
+
+ /** Return reference to right expression. */
+ right_reference right_expression() const { return m_right; }
+
+
+ public:
+
+ /** Construct from the two subexpressions. */
+ explicit BinaryVectorOp(left_reference left, right_reference right)
+ : m_left(left), m_right(right) {}
+
+ /** Copy constructor. */
+ BinaryVectorOp(const expr_type& e)
+ : m_left(e.m_left), m_right(e.m_right) {}
+
+
+ protected:
+
+ left_reference m_left;
+ right_reference m_right;
+
+
+ private:
+
+ /* This ensures that a compile-time size check is executed: */
+ typename checked_size::check_type _dummy;
+
+
+ private:
+
+ /* Cannot be assigned to: */
+ expr_type& operator=(const expr_type&);
+};
+
+/** Expression traits class for BinaryVectorOp<>. */
+template<class LeftT, class RightT, class OpT>
+struct ExprTraits< BinaryVectorOp<LeftT,RightT,OpT> >
+{
+ typedef BinaryVectorOp<LeftT,RightT,OpT> expr_type;
+ typedef LeftT left_type;
+ typedef RightT right_type;
+
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::result_type result_type;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_node_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& e) const { return e.size(); }
+};
+
+/* Helper struct to verify that both arguments are vector expressions: */
+template<typename LeftTraits, typename RightTraits>
+struct VectorExpressions
+{
+ /* Require that both arguments are vector expressions: */
+ typedef typename LeftTraits::result_tag left_result;
+ typedef typename RightTraits::result_tag right_result;
+ enum { is_true = (same_type<left_result,et::vector_result_tag>::is_true
+ && same_type<right_result,et::vector_result_tag>::is_true) };
+};
+
+namespace detail {
+
+template<typename VecT, typename RT, typename MT> inline
+void Resize(VecT&,size_t,RT,MT) {}
+
+template<typename VecT> inline
+void Resize(VecT& v, size_t S, resizable_tag, dynamic_memory_tag) {
+ v.resize(S);
+}
+
+template<typename VecT> inline
+void Resize(VecT& v, size_t S) {
+ Resize(v, S, typename VecT::resizing_tag(), typename VecT::memory_tag());
+}
+
+} // namespace detail
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_functions_h
+#define vector_functions_h
+
+namespace cml {
+
+/** Squared length of a vector. */
+template<typename E, class AT>
+inline typename vector<E,AT>::value_type
+length_squared(const vector<E,AT>& arg)
+{
+ return arg.length_squared();
+}
+
+/** Squared length of a vector expr. */
+template<typename XprT>
+inline typename XprT::value_type
+length_squared(VECXPR_ARG_TYPE arg)
+{
+ return arg.length_squared();
+}
+
+/** Length of a vector. */
+template<typename E, class AT>
+inline typename vector<E,AT>::value_type
+length(const vector<E,AT>& arg)
+{
+ return arg.length();
+}
+
+/** Length of a vector expr. */
+template<typename XprT>
+inline typename XprT::value_type
+length(VECXPR_ARG_TYPE arg)
+{
+ return arg.length();
+}
+
+/** Normalize a vector. */
+template<typename E, class AT>
+inline vector<E, AT>
+normalize(const vector<E,AT>& arg)
+{
+ vector<E, AT> result(arg);
+ result.normalize();
+ return result;
+}
+
+/** Normalize a vector expr. */
+template<typename XprT>
+inline typename XprT::result_type
+normalize(VECXPR_ARG_TYPE arg)
+{
+ return arg.normalize();
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines vector operators.
+ */
+
+#ifndef vector_ops_h
+#define vector_ops_h
+
+#include <cml/et/scalar_ops.h>
+#include <cml/vector/vector_expr.h>
+#include <cml/vector/vecop_macros.h>
+
+namespace cml {
+
+CML_VEC_UNIOP( operator+, et::OpPos)
+CML_VECXPR_UNIOP( operator+, et::OpPos)
+
+CML_VEC_UNIOP( operator-, et::OpNeg)
+CML_VECXPR_UNIOP( operator-, et::OpNeg)
+
+CML_VEC_VEC_BINOP( operator+, et::OpAdd)
+CML_VECXPR_VEC_BINOP( operator+, et::OpAdd)
+CML_VEC_VECXPR_BINOP( operator+, et::OpAdd)
+CML_VECXPR_VECXPR_BINOP( operator+, et::OpAdd)
+
+CML_VEC_VEC_BINOP( operator-, et::OpSub)
+CML_VECXPR_VEC_BINOP( operator-, et::OpSub)
+CML_VEC_VECXPR_BINOP( operator-, et::OpSub)
+CML_VECXPR_VECXPR_BINOP( operator-, et::OpSub)
+
+CML_VEC_SCALAR_BINOP( operator*, et::OpMul)
+CML_SCALAR_VEC_BINOP( operator*, et::OpMul)
+CML_VECXPR_SCALAR_BINOP( operator*, et::OpMul)
+CML_SCALAR_VECXPR_BINOP( operator*, et::OpMul)
+
+CML_VEC_SCALAR_BINOP( operator/, et::OpDiv)
+CML_VECXPR_SCALAR_BINOP( operator/, et::OpDiv)
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_print_h
+#define vector_print_h
+
+#include <iostream>
+
+namespace cml {
+
+/** Output a vector to a std::ostream. */
+template<typename E, class AT > inline std::ostream&
+operator<<(std::ostream& os, const vector<E,AT>& v)
+{
+ os << "[";
+ for (size_t i = 0; i < v.size(); ++i) {
+ os << " " << v[i];
+ }
+ os << " ]";
+ return os;
+}
+
+/** Output a vector expression to a std::ostream. */
+template< class XprT > inline std::ostream&
+operator<<(std::ostream& os, const et::VectorXpr<XprT>& v)
+{
+ os << "[";
+ for (size_t i = 0; i < v.size(); ++i) {
+ os << " " << v[i];
+ }
+ os << " ]";
+ return os;
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief Defines vector dot and outer products.
+ *
+ * @todo Figure out if the source or destination size type should trigger
+ * unrolling. May need a per-compiler compile-time option for this.
+ */
+
+#ifndef vector_products_h
+#define vector_products_h
+
+#include <cml/core/cml_assert.h>
+#include <cml/et/scalar_promotions.h>
+#include <cml/et/size_checking.h>
+#include <cml/vector/vector_unroller.h>
+#include <cml/vector/vector_expr.h>
+#include <cml/matrix/matrix_expr.h>
+
+/* This is used below to create a more meaningful compile-time error when
+ * dot() is not provided with vector or VectorExpr arguments:
+ */
+struct dot_expects_vector_args_error;
+
+/* This is used below to create a more meaningful compile-time error when
+ * perp_dot() is not provided with 2D vector or VectorExpr arguments:
+ */
+struct perp_dot_expects_vector_args_error;
+struct perp_dot_expects_2D_vector_args_error;
+
+/* This is used below to create a more meaningful compile-time error when
+ * outer() is not provided with vector or VectorExpr arguments:
+ */
+struct outer_expects_vector_args_error;
+
+/* This is used below to create a more meaningful compile-time error when
+ * cross() is not provided with 3D vector or VectorExpr arguments:
+ */
+struct cross_expects_vector_args_error;
+struct cross_expects_3D_vector_args_error;
+
+
+namespace cml {
+namespace detail {
+
+template<typename LeftT, typename RightT>
+struct DotPromote
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::value_type left_value;
+ typedef typename right_traits::value_type right_value;
+
+ /* Deduce the promoted scalar type: */
+ typedef et::OpMul<left_value, right_value> op_mul;
+ typedef typename et::OpAdd<
+ typename op_mul::value_type,
+ typename op_mul::value_type> op_add;
+ typedef typename op_add::value_type promoted_scalar;
+};
+
+template<typename LeftT, typename RightT>
+struct CrossPromote
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_type left_type;
+ typedef typename right_traits::result_type right_type;
+
+ /* Deduce the matrix result type: */
+ typedef typename et::VectorPromote<
+ left_type,right_type>::temporary_type promoted_vector;
+};
+
+template<typename LeftT, typename RightT>
+struct OuterPromote
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_type left_type;
+ typedef typename right_traits::result_type right_type;
+
+ /* Deduce the matrix result type: */
+ typedef typename et::MatrixPromote<
+ left_type,right_type>::temporary_type promoted_matrix;
+};
+
+/** Construct a dot unroller for fixed-size arrays.
+ *
+ * @note This should only be called for vectors.
+ *
+ * @sa cml::dot
+ */
+template<typename LeftT, typename RightT>
+inline typename DotPromote<LeftT,RightT>::promoted_scalar
+UnrollDot(const LeftT& left, const RightT& right, fixed_size_tag)
+{
+ /* Shorthand: */
+ typedef DotPromote<LeftT,RightT> dot_helper;
+
+ /* Compile-type vector size check: */
+ typedef typename et::GetCheckedSize<LeftT,RightT,fixed_size_tag>
+ ::check_type check_sizes;
+
+ /* Get the fixed array size using the helper: */
+ enum { Len = check_sizes::array_size };
+
+ /* Record the unroller type: */
+ typedef typename dot_helper::op_mul op_mul;
+ typedef typename dot_helper::op_add op_add;
+ typedef typename et::detail::VectorAccumulateUnroller<
+ op_add,op_mul,LeftT,RightT>::template
+ Eval<0, Len-1, (Len <= CML_VECTOR_DOT_UNROLL_LIMIT)> Unroller;
+ /* Note: Len is the array size, so Len-1 is the last element. */
+
+ /* Now, call the unroller: */
+ return Unroller()(left,right);
+}
+
+/** Use a loop to compute the dot product for dynamic arrays.
+ *
+ * @note This should only be called for vectors.
+ *
+ * @sa cml::dot
+ */
+template<typename LeftT, typename RightT>
+inline typename DotPromote<LeftT,RightT>::promoted_scalar
+UnrollDot(const LeftT& left, const RightT& right, dynamic_size_tag)
+{
+ /* Shorthand: */
+ typedef DotPromote<LeftT,RightT> dot_helper;
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename dot_helper::op_mul op_mul;
+ typedef typename dot_helper::op_add op_add;
+
+ /* Record the return type: */
+ typedef typename dot_helper::promoted_scalar sum_type;
+
+ /* Verify expression sizes: */
+ const size_t N = et::CheckedSize(left,right,dynamic_size_tag());
+
+ /* Initialize the sum. Left and right must be vector expressions, so
+ * it's okay to use array notation here:
+ */
+ sum_type sum(op_mul().apply(left[0],right[0]));
+ for(size_t i = 1; i < N; ++i) {
+ /* XXX This might not be optimized properly by some compilers.
+ * but to do anything else requires changing the requirements
+ * of a scalar operator, or requires defining a new class of scalar
+ * <op>= operators.
+ */
+ sum = op_add().apply(sum, op_mul().apply(left[i], right[i]));
+ /* Note: we don't need get(), since both arguments are required to
+ * be vector expressions.
+ */
+ }
+ return sum;
+}
+
+/** For cross(): compile-time check for a 3D vector. */
+template<typename VecT> inline void
+Require3D(const VecT&, fixed_size_tag) {
+ CML_STATIC_REQUIRE_M(
+ ((size_t)VecT::array_size == 3),
+ cross_expects_3D_vector_args_error);
+}
+
+/** For cross(): run-time check for a 3D vector. */
+template<typename VecT> inline void
+Require3D(const VecT& v, dynamic_size_tag) {
+ et::GetCheckedSize<VecT,VecT,dynamic_size_tag>()
+ .equal_or_fail(v.size(),size_t(3));
+}
+
+/** For perp_dot(): compile-time check for a 2D vector. */
+template<typename VecT> inline void
+Require2D(const VecT& v, fixed_size_tag) {
+ CML_STATIC_REQUIRE_M(
+ ((size_t)VecT::array_size == 2),
+ perp_dot_expects_2D_vector_args_error);
+}
+
+/** For perp_dot(): run-time check for a 2D vector. */
+template<typename VecT> inline void
+Require2D(const VecT& v, dynamic_size_tag) {
+ et::GetCheckedSize<VecT,VecT,dynamic_size_tag>()
+ .equal_or_fail(v.size(),size_t(2));
+}
+
+} // namespace detail
+
+
+/** Vector dot (inner) product implementation.
+ */
+template<typename LeftT, typename RightT>
+inline typename detail::DotPromote<LeftT,RightT>::promoted_scalar
+dot(const LeftT& left, const RightT& right)
+{
+ /* Shorthand: */
+ typedef detail::DotPromote<LeftT,RightT> dot_helper;
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_type left_type;
+ typedef typename right_traits::result_type right_type;
+ typedef typename left_traits::size_tag left_size;
+ typedef typename right_traits::size_tag right_size;
+
+ /* dot() requires vector expressions: */
+ CML_STATIC_REQUIRE_M(
+ (et::VectorExpressions<LeftT,RightT>::is_true),
+ dot_expects_vector_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas:
+ */
+
+ /* Figure out the unroller to use (fixed or dynamic): */
+ typedef typename et::VectorPromote<
+ left_type, right_type>::temporary_type promoted_vector;
+ typedef typename promoted_vector::size_tag size_tag;
+
+ /* Call unroller: */
+ return detail::UnrollDot(left,right,size_tag());
+}
+
+/** perp_dot()
+ */
+template<typename LeftT, typename RightT>
+inline typename detail::DotPromote<LeftT,RightT>::promoted_scalar
+perp_dot(const LeftT& left, const RightT& right)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_tag left_result;
+ typedef typename right_traits::result_tag right_result;
+
+ /* perp_dot() requires vector expressions: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<left_result, et::vector_result_tag>::is_true
+ && same_type<right_result, et::vector_result_tag>::is_true),
+ perp_dot_expects_vector_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Make sure arguments are 2D vectors: */
+ detail::Require2D(left, typename left_traits::size_tag());
+ detail::Require2D(right, typename right_traits::size_tag());
+
+ /* Get result type: */
+ typedef typename detail::DotPromote<
+ LeftT,RightT>::promoted_scalar result_type;
+
+ /* Compute and return: */
+ return result_type(left[0]*right[1]-left[1]*right[0]);
+}
+
+template<typename LeftT, typename RightT>
+inline typename detail::CrossPromote<LeftT,RightT>::promoted_vector
+cross(const LeftT& left, const RightT& right)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_tag left_result;
+ typedef typename right_traits::result_tag right_result;
+
+ /* outer() requires vector expressions: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<left_result, et::vector_result_tag>::is_true
+ && same_type<right_result, et::vector_result_tag>::is_true),
+ cross_expects_vector_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Make sure arguments are 3D vectors: */
+ detail::Require3D(left, typename left_traits::size_tag());
+ detail::Require3D(right, typename right_traits::size_tag());
+
+ /* Get result type: */
+ typedef typename detail::CrossPromote<
+ LeftT,RightT>::promoted_vector result_type;
+
+ /* Now, compute and return the cross product: */
+ result_type result(
+ left[1]*right[2] - left[2]*right[1],
+ left[2]*right[0] - left[0]*right[2],
+ left[0]*right[1] - left[1]*right[0]
+ );
+ return result;
+}
+
+/** Return the triple product of three 3D vectors.
+ *
+ * No checking is done here, as dot() and cross() will catch any size or
+ * type errors.
+ */
+
+template < class VecT_1, class VecT_2, class VecT_3 >
+typename detail::DotPromote<
+ VecT_1, typename detail::CrossPromote< VecT_2, VecT_3 >::promoted_vector
+>::promoted_scalar
+triple_product(const VecT_1& v1, const VecT_2& v2, const VecT_3& v3) {
+ return dot(v1,cross(v2,v3));
+}
+
+template<typename LeftT, typename RightT>
+inline typename detail::OuterPromote<LeftT,RightT>::promoted_matrix
+outer(const LeftT& left, const RightT& right)
+{
+ /* Shorthand: */
+ typedef et::ExprTraits<LeftT> left_traits;
+ typedef et::ExprTraits<RightT> right_traits;
+ typedef typename left_traits::result_tag left_result;
+ typedef typename right_traits::result_tag right_result;
+
+ /* outer() requires vector expressions: */
+ CML_STATIC_REQUIRE_M(
+ (same_type<left_result, et::vector_result_tag>::is_true
+ && same_type<right_result, et::vector_result_tag>::is_true),
+ dot_expects_vector_args_error);
+ /* Note: parens are required here so that the preprocessor ignores the
+ * commas.
+ */
+
+ /* Create a matrix with the right size (resize() is a no-op for
+ * fixed-size matrices):
+ */
+ typename detail::OuterPromote<LeftT,RightT>::promoted_matrix C;
+ cml::et::detail::Resize(C, left.size(), right.size());
+
+ /* Now, compute the outer product: */
+ for(size_t i = 0; i < left.size(); ++i) {
+ for(size_t j = 0; j < right.size(); ++j) {
+ C(i,j) = left[i]*right[j];
+ /* Note: both arguments are vectors, so array notation
+ * is okay here.
+ */
+ }
+ }
+
+ return C;
+}
+
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Defines promotions for vectors used in vector/vector or vector/scalar
+ * expressions.
+ *
+ * @sa BinaryVectorOp
+ */
+
+#ifndef vector_promotions_h
+#define vector_promotions_h
+
+#include <cml/et/scalar_promotions.h>
+#include <cml/et/array_promotions.h>
+
+namespace cml {
+namespace et {
+
+/* Default vector type promotion template. */
+template<class LeftT, class RightT> struct VectorPromote;
+
+/** Type promotion for two vector types. */
+template<typename E1, class AT1, typename E2, class AT2>
+struct VectorPromote< cml::vector<E1,AT1>, cml::vector<E2,AT2> >
+{
+ typedef typename ArrayPromote<
+ typename cml::vector<E1,AT1>::array_type,
+ typename cml::vector<E2,AT2>::array_type
+ >::type promoted_array;
+
+ /* The deduced vector result type: */
+ typedef cml::vector<
+ typename promoted_array::value_type,
+ typename promoted_array::generator_type
+ > type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+/** Type promotion for a vector and a scalar. */
+template<typename E, class AT, typename S>
+struct VectorPromote<cml::vector<E,AT>, S>
+{
+ /* The deduced vector result type (the array type is the same): */
+ typedef cml::vector<typename ScalarPromote<E,S>::type, AT> type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+/** Type promotion for a scalar and a vector. */
+template<typename S, typename E, class AT>
+struct VectorPromote<S, cml::vector<E,AT> >
+{
+ /* The deduced vector result type (the array type is the same): */
+ typedef cml::vector<typename ScalarPromote<S,E>::type, AT> type;
+
+ /* The deduced temporary type: */
+ typedef typename type::temporary_type temporary_type;
+};
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ */
+
+#ifndef vector_traits_h
+#define vector_traits_h
+
+#include <cml/et/traits.h>
+
+namespace cml {
+namespace et {
+
+/** Expression traits for a vector<> type. */
+template<typename E, class AT>
+struct ExprTraits< cml::vector<E,AT> >
+{
+ typedef typename cml::vector<E,AT>::expr_type expr_type;
+ typedef typename expr_type::value_type value_type;
+ typedef typename expr_type::expr_reference reference;
+ typedef typename expr_type::expr_const_reference const_reference;
+ typedef typename expr_type::result_tag result_tag;
+ typedef typename expr_type::size_tag size_tag;
+ typedef typename expr_type::resizing_tag resizing_tag;
+ typedef typename expr_type::assignable_tag assignable_tag;
+ typedef expr_type result_type;
+ typedef expr_leaf_tag node_tag;
+
+ value_type get(const expr_type& v, size_t i) const { return v[i]; }
+ size_t size(const expr_type& v) const { return v.size(); }
+};
+
+} // namespace et
+} // namespace cml
+
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
--- /dev/null
+/* -*- C++ -*- ------------------------------------------------------------
+
+Copyright (c) 2007 Jesse Anders and Demian Nave http://cmldev.net/
+
+The Configurable Math Library (CML) is distributed under the terms of the
+Boost Software License, v1.0 (see cml/LICENSE for details).
+
+ *-----------------------------------------------------------------------*/
+/** @file
+ * @brief
+ *
+ * Defines vector unrollers.
+ *
+ * @todo Add unrolling for dynamic vectors, and for vectors longer than
+ * CML_VECTOR_UNROLL_LIMIT.
+ *
+ * @todo Does it make sense to unroll an assignment if either side of the
+ * assignment has a fixed size, or just when the target vector is fixed
+ * size?
+ */
+
+#ifndef vector_unroller_h
+#define vector_unroller_h
+
+#include <cml/et/traits.h>
+#include <cml/et/size_checking.h>
+#include <cml/et/scalar_ops.h>
+
+#if !defined(CML_VECTOR_UNROLL_LIMIT)
+#error "CML_VECTOR_UNROLL_LIMIT is undefined."
+#endif
+
+namespace cml {
+namespace et {
+namespace detail {
+
+/** Unroll a binary assignment operator on a fixed-size vector.
+ *
+ * This uses forward iteration to make efficient use of the cache.
+ *
+ * @sa cml::vector
+ * @sa cml::et::OpAssign
+ *
+ * @bug Need to verify that OpT is actually an assignment operator.
+ */
+template<class OpT, typename E, class AT, class SrcT>
+class VectorAssignmentUnroller
+{
+ protected:
+
+ /* Forward declare: */
+ template<int N, int Last, bool can_unroll> struct Eval;
+
+ /* The vector type being assigned to: */
+ typedef cml::vector<E,AT> vector_type;
+
+ /* Record traits for the arguments: */
+ typedef ExprTraits<vector_type> dest_traits;
+ typedef ExprTraits<SrcT> src_traits;
+
+ /** Evaluate the binary operator for the first Len-1 elements. */
+ template<int N, int Last> struct Eval<N,Last,true> {
+ void operator()(vector_type& dest, const SrcT& src) const {
+
+ /* Apply to current N: */
+ OpT().apply(dest[N], src_traits().get(src,N));
+ /* Note: we don't need get(), since dest is a vector. */
+
+ /* Apply to N+1: */
+ Eval<N+1,Last,true>()(dest, src);
+ }
+ };
+
+ /** Evaluate the binary operator at element Last. */
+ template<int Last> struct Eval<Last,Last,true> {
+ void operator()(vector_type& dest, const SrcT& src) const {
+
+ /* Apply to last element: */
+ OpT().apply(dest[Last], src_traits().get(src,Last));
+ /* Note: we don't need get(), since dest is a vector. */
+ }
+ };
+
+
+ /** Evaluate the binary operator using a loop.
+ *
+ * This is used when the vector's length is longer than
+ * CML_VECTOR_UNROLL_LIMIT
+ */
+ template<int N, int Last> struct Eval<N,Last,false> {
+ void operator()(vector_type& dest, const SrcT& src) const {
+ for(size_t i = 0; i <= Last; ++i) {
+ OpT().apply(dest[i], src_traits().get(src,i));
+ /* Note: we don't need get(), since dest is a vector. */
+ }
+ }
+ };
+
+
+ public:
+
+ /** Unroll assignment to a fixed-sized vector. */
+ void operator()(vector_type& dest, const SrcT& src, cml::fixed_size_tag)
+ {
+ typedef cml::vector<E,AT> vector_type;
+ enum { Len = vector_type::array_size };
+ typedef typename VectorAssignmentUnroller<OpT,E,AT,SrcT>::template
+ Eval<0, Len-1, (Len <= CML_VECTOR_UNROLL_LIMIT)> Unroller;
+ /* Note: Len is the array size, so Len-1 is the last element. */
+
+ /* Use a run-time check if src is a run-time sized expression: */
+ typedef typename ExprTraits<SrcT>::size_tag src_size;
+ typedef typename select_if<
+ same_type<src_size,dynamic_size_tag>::is_true,
+ dynamic_size_tag, fixed_size_tag>::result size_tag;
+
+ /* Check the expression size (the returned size isn't needed): */
+ CheckedSize(dest,src,size_tag());
+ /* Note: for two fixed-size expressions, the if-statements and
+ * comparisons should be completely eliminated as dead code. If src
+ * is a dynamic-sized expression, the check will still happen.
+ */
+
+ /* Now, call the unroller: */
+ Unroller()(dest,src);
+ }
+
+
+ private:
+ /* XXX Blah, a temp. hack to fix the auto-resizing stuff below. */
+ size_t CheckOrResize(
+ vector_type& dest, const SrcT& src, cml::resizable_tag)
+ {
+#if defined(CML_AUTOMATIC_VECTOR_RESIZE_ON_ASSIGNMENT)
+ /* Get the size of src. This also causes src to check its size: */
+ size_t N = std::max(dest.size(),src_traits().size(src));
+
+ /* Set the destination vector's size: */
+ cml::et::detail::Resize(dest,N);
+#else
+ size_t N = CheckedSize(dest,src,dynamic_size_tag());
+#endif
+
+ return N;
+ }
+
+ size_t CheckOrResize(
+ vector_type& dest, const SrcT& src, cml::not_resizable_tag)
+ {
+ return CheckedSize(dest,src,dynamic_size_tag());
+ }
+ /* XXX Blah, a temp. hack to fix the auto-resizing stuff below. */
+ public:
+
+
+ /** Just use a loop to assign to a runtime-sized vector. */
+ void operator()(vector_type& dest, const SrcT& src, cml::dynamic_size_tag)
+ {
+ /* Shorthand: */
+ typedef ExprTraits<SrcT> src_traits;
+ size_t N = this->CheckOrResize(
+ dest,src,typename vector_type::resizing_tag());
+ for(size_t i = 0; i < N; ++i) {
+ OpT().apply(dest[i], src_traits().get(src,i));
+ /* Note: we don't need get(), since dest is a vector. */
+ }
+ }
+
+};
+
+/** Unroll a vector accumulation/reduction operator.
+ *
+ * This uses forward iteration to make efficient use of the cache.
+ */
+template<class AccumT, class OpT, class LeftT, class RightT>
+struct VectorAccumulateUnroller
+{
+ /* Forward declare: */
+ template<int N, int Last, bool can_unroll> struct Eval;
+
+ /* Record traits for the arguments: */
+ typedef ExprTraits<LeftT> left_traits;
+ typedef ExprTraits<RightT> right_traits;
+
+ /* Figure out the return type: */
+ typedef typename AccumT::value_type result_type;
+
+ /** Evaluate for the first Len-1 elements. */
+ template<int N, int Last> struct Eval<N,Last,true> {
+ result_type operator()(
+ const LeftT& left, const RightT& right) const
+ {
+ /* Apply to last value: */
+ return AccumT().apply(
+ OpT().apply(left[N], right_traits().get(right,N)),
+ Eval<N+1,Last,true>()(left, right));
+ /* Note: we don't need get(), since dest is a vector. */
+ }
+ };
+
+ /** Evaluate the binary operator at element Last. */
+ template<int Last> struct Eval<Last,Last,true> {
+ result_type operator()(
+ const LeftT& left, const RightT& right) const
+ {
+ return OpT().apply(left[Last],right_traits().get(right,Last));
+ /* Note: we don't need get(), since dest is a vector. */
+ }
+ };
+
+ /** Evaluate using a loop. */
+ template<int N, int Last> struct Eval<N,Last,false> {
+ result_type operator()(
+ const LeftT& left, const RightT& right) const
+ {
+ result_type accum = OpT().apply(left[0],right[0]);
+ for(size_t i = 1; i <= Last; ++i) {
+ /* XXX This might not be optimized properly by some compilers,
+ * but to do anything else requires changing the requirements
+ * of a scalar operator.
+ */
+ accum = AccumT().apply(accum, OpT().apply(
+ left[i],right_traits().get(right,i)));
+ /* Note: we don't need get(), since dest is a vector. */
+ }
+ }
+ };
+};
+
+}
+
+/** Construct an assignment unroller.
+ *
+ * The operator must be an assignment op, otherwise, this doesn't make any
+ * sense.
+ *
+ * @bug Need to verify that OpT is actually an assignment operator.
+ */
+template<class OpT, class SrcT, typename E, class AT> inline
+void UnrollAssignment(cml::vector<E,AT>& dest, const SrcT& src)
+{
+ /* Record the destination vector type, and the expression traits: */
+ typedef cml::vector<E,AT> vector_type;
+
+ /* Record the type of the unroller: */
+ typedef detail::VectorAssignmentUnroller<OpT,E,AT,SrcT> unroller;
+
+ /* Do the unroll call: */
+ unroller()(dest, src, typename vector_type::size_tag());
+ /* XXX It may make sense to unroll if either side is a fixed size. */
+}
+
+} // namespace et
+} // namespace cml
+
+#endif
+
+// -------------------------------------------------------------------------
+// vim:ft=cpp
+++ /dev/null
-
-/*******************************************************************************
-
- Copyright (c) 2009, Charles McGarvey
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-#include "math.hh"
-#include "vector.hh"
-#include "matrix.hh"
-
-
-namespace dc {
-
-
-vector2 vector2::zero(0.0, 0.0);
-vector3 vector3::zero(0.0, 0.0, 0.0);
-
-matrix3 matrix3::zero(0.0, 0.0, 0.0,
- 0.0, 0.0, 0.0,
- 0.0, 0.0, 0.0);
-matrix3 matrix3::identity(1.0, 0.0, 0.0,
- 0.0, 1.0, 0.0,
- 0.0, 0.0, 1.0);
-
-matrix4 matrix4::zero(0.0, 0.0, 0.0, 0.0,
- 0.0, 0.0, 0.0, 0.0,
- 0.0, 0.0, 0.0, 0.0,
- 0.0, 0.0, 0.0, 0.0);
-matrix4 matrix4::identity(1.0, 0.0, 0.0, 0.0,
- 0.0, 1.0, 0.0, 0.0,
- 0.0, 0.0, 1.0, 0.0,
- 0.0, 0.0, 0.0, 1.0);
-
-
-} // namespace dc
-
*******************************************************************************/
+#ifndef _MATH_HH_
+#define _MATH_HH_
+
/**
* @file math.hh
* General math-related types and functions.
*/
-#ifndef _MATH_HH_
-#define _MATH_HH_
-
#include <cmath>
+#include <cml/cml.h>
namespace dc {
-typedef double scalar; ///< Scalar variable.
+typedef double scalar; ///< Scalar variable.
+
+typedef cml::vector2d vector2;
+typedef cml::vector3d vector3;
+typedef cml::vector4d vector4;
+
+typedef cml::matrix33d_c matrix3;
+typedef cml::matrix44d_c matrix4;
+
+typedef cml::quaterniond_p quaternion;
+
+typedef cml::vector4f color;
// Here's a simple way to check the equality of floating-point variables more
} // namespace dc
-
#endif // _MATH_HH_
+++ /dev/null
-
-/*******************************************************************************
-
- Copyright (c) 2009, Charles McGarvey
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-#ifndef _MATRIX_HH_
-#define _MATRIX_HH_
-
-/**
- * @file matrix.hh
- * Matrix classes.
- */
-
-#include <cassert>
-
-#include "math.hh"
-
-
-namespace dc {
-
-/**
- * 3x3 matrix.
- */
-
-struct matrix3
-{
- matrix3() {}
- matrix3(scalar M11, scalar M12, scalar M13,
- scalar M21, scalar M22, scalar M23,
- scalar M31, scalar M32, scalar M33)
- {
- m11 = M11; m12 = M12; m13 = M13;
- m21 = M21; m22 = M22; m23 = M23;
- m31 = M31; m32 = M32; m33 = M33;
- }
- matrix3(scalar m[9])
- {
- array[0] = m[0]; array[1] = m[1]; array[2] = m[2];
- array[3] = m[3]; array[4] = m[4]; array[5] = m[5];
- array[6] = m[6]; array[7] = m[7]; array[8] = m[8];
- }
-
- const scalar& operator[](int i) const
- {
- assert(i >= 0 && i <= 8 && "Index into matrix3 out of bounds.");
- return array[i];
- }
- scalar& operator[](int i)
- {
- assert(i >= 0 && i <= 8 && "Index into matrix3 out of bounds.");
- return array[i];
- }
-
- matrix3 operator+(const matrix3& m) const
- {
- return matrix3(m11 + m.m11, m12 + m.m12, m13 + m.m13,
- m21 + m.m21, m22 + m.m22, m23 + m.m23,
- m31 + m.m31, m32 + m.m32, m33 + m.m33);
- }
- matrix3 operator-(const matrix3& m) const
- {
- return matrix3(m11 - m.m11, m12 - m.m12, m13 - m.m13,
- m21 - m.m21, m22 - m.m22, m23 - m.m23,
- m31 - m.m31, m32 - m.m32, m33 - m.m33);
- }
- matrix3 operator*(const matrix3& m) const
- {
- return matrix3(m11 * m.m11 + m12 * m.m21 + m13 * m.m31,
- m11 * m.m12 + m12 * m.m22 + m13 * m.m32,
- m11 * m.m13 + m12 * m.m23 + m13 * m.m33,
- m21 * m.m11 + m22 * m.m21 + m23 * m.m31,
- m21 * m.m12 + m22 * m.m22 + m23 * m.m32,
- m21 * m.m13 + m22 * m.m23 + m23 * m.m33,
- m31 * m.m11 + m32 * m.m21 + m33 * m.m31,
- m31 * m.m12 + m32 * m.m22 + m33 * m.m32,
- m32 * m.m13 + m32 * m.m23 + m33 * m.m33);
- }
- matrix3 operator*(scalar s) const
- {
- return matrix3(m11 * s, m12 * s, m13 * s,
- m21 * s, m22 * s, m23 * s,
- m31 * s, m32 * s, m33 * s);
- }
- matrix3 operator/(scalar s) const
- {
- return matrix3(m11 / s, m12 / s, m13 / s,
- m21 / s, m22 / s, m23 / s,
- m31 / s, m32 / s, m33 / s);
- }
-
- matrix3& operator+=(const matrix3& m)
- {
- m11 += m.m11; m12 += m.m12; m13 += m.m13;
- m21 += m.m21; m22 += m.m22; m23 += m.m23;
- m31 += m.m31; m32 += m.m32; m33 += m.m33;
- return *this;
- }
- matrix3& operator-=(const matrix3& m)
- {
- m11 -= m.m11; m12 -= m.m12; m13 -= m.m13;
- m21 -= m.m21; m22 -= m.m22; m23 -= m.m23;
- m31 -= m.m31; m32 -= m.m32; m33 -= m.m33;
- return *this;
- }
- matrix3& operator*=(const matrix3& m)
- {
- return *this = *this * m;
- }
- matrix3& operator*=(scalar s)
- {
- m11 *= s; m12 *= s; m13 *= s;
- m21 *= s; m22 *= s; m23 *= s;
- m31 *= s; m32 *= s; m33 *= s;
- return *this;
- }
- matrix3& operator/=(scalar s)
- {
- m11 /= s; m12 /= s; m13 /= s;
- m21 /= s; m22 /= s; m23 /= s;
- m31 /= s; m32 /= s; m33 /= s;
- return *this;
- }
-
- matrix3 operator-() const
- {
- return matrix3(-m11, -m12, -m13,
- -m21, -m22, -m23,
- -m31, -m32, -m33);
- }
-
- bool operator==(const matrix3& m) const
- {
- return equals(m11,m.m11) && equals(m12,m.m12) && equals(m13,m.m13) &&
- equals(m21,m.m21) && equals(m22,m.m22) && equals(m23,m.m23) &&
- equals(m31,m.m31) && equals(m32,m.m32) && equals(m33,m.m33);
- }
- bool operator!=(const matrix3& m) const
- {
- return !(*this == m);
- }
-
-
- union
- {
- struct
- {
- scalar m11, m21, m31;
- scalar m12, m22, m32;
- scalar m13, m23, m33; ///< scalars
- };
- scalar array[9]; ///< array
- };
-
- static matrix3 zero; ///< zero matrix
- static matrix3 identity; ///< identity matrix
-};
-
-inline matrix3 operator*(scalar s, const matrix3& m)
-{
- return m * s;
-}
-inline matrix3 operator/(scalar s, const matrix3& m)
-{
- return matrix3(s / m.m11, s / m.m12, s / m.m13,
- s / m.m21, s / m.m22, s / m.m23,
- s / m.m31, s / m.m32, s / m.m33);
-}
-
-
-//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-/**
- * 4x4 matrix.
- */
-
-struct matrix4
-{
- matrix4() {}
- matrix4(scalar M11, scalar M12, scalar M13, scalar M14,
- scalar M21, scalar M22, scalar M23, scalar M24,
- scalar M31, scalar M32, scalar M33, scalar M34,
- scalar M41, scalar M42, scalar M43, scalar M44)
- {
- m11 = M11; m12 = M12; m13 = M13; m14 = M14;
- m21 = M21; m22 = M22; m23 = M23; m24 = M24;
- m31 = M31; m32 = M32; m33 = M33; m34 = M34;
- m41 = M41; m42 = M42; m43 = M43; m44 = M44;
- }
- matrix4(scalar m[15])
- {
- array[0] = m[0]; array[1] = m[1]; array[2] = m[2]; array[3] = m[3];
- array[4] = m[4]; array[5] = m[5]; array[6] = m[6]; array[7] = m[7];
- array[8] = m[8]; array[9] = m[9]; array[10] = m[10]; array[11] = m[11];
- array[12] = m[12]; array[13] = m[13]; array[14] = m[14]; array[15] = m[15];
- }
-
- const scalar& operator[](int i) const
- {
- assert(i >= 0 && i <= 15 && "Index into matrix4 out of bounds.");
- return array[i];
- }
- scalar& operator[](int i)
- {
- assert(i >= 0 && i <= 15 && "Index into matrix4 out of bounds.");
- return array[i];
- }
-
- matrix4 operator+(const matrix4& m) const
- {
- return matrix4(m11 + m.m11, m12 + m.m12, m13 + m.m13, m14 + m.m14,
- m21 + m.m21, m22 + m.m22, m23 + m.m23, m24 + m.m24,
- m31 + m.m31, m32 + m.m32, m33 + m.m33, m34 + m.m34,
- m41 + m.m41, m42 + m.m42, m43 + m.m43, m44 + m.m44);
- }
- matrix4 operator-(const matrix4& m) const
- {
- return matrix4(m11 - m.m11, m12 - m.m12, m13 - m.m13, m14 - m.m14,
- m21 - m.m21, m22 - m.m22, m23 - m.m23, m24 - m.m24,
- m31 - m.m31, m32 - m.m32, m33 - m.m33, m34 - m.m34,
- m41 - m.m41, m42 - m.m42, m43 - m.m43, m44 - m.m44);
- }
- matrix4 operator*(const matrix4& m) const // TODO ??
- {
- return matrix4(m11 * m.m11 + m12 * m.m21 + m13 * m.m31 + m14 * m.m41,
- m11 * m.m12 + m12 * m.m22 + m13 * m.m32 + m14 * m.m42,
- m11 * m.m13 + m12 * m.m23 + m13 * m.m33 + m14 * m.m43,
- m11 * m.m14 + m12 * m.m24 + m13 * m.m34 + m14 * m.m44,
- m21 * m.m11 + m22 * m.m21 + m23 * m.m31 + m24 * m.m41,
- m21 * m.m12 + m22 * m.m22 + m23 * m.m32 + m24 * m.m42,
- m21 * m.m13 + m22 * m.m23 + m23 * m.m33 + m24 * m.m43,
- m21 * m.m14 + m22 * m.m24 + m23 * m.m34 + m24 * m.m44,
- m31 * m.m11 + m32 * m.m21 + m33 * m.m31 + m34 * m.m41,
- m31 * m.m12 + m32 * m.m22 + m33 * m.m32 + m34 * m.m42,
- m31 * m.m13 + m32 * m.m23 + m33 * m.m33 + m34 * m.m43,
- m31 * m.m14 + m32 * m.m24 + m33 * m.m34 + m34 * m.m44,
- m41 * m.m11 + m42 * m.m21 + m43 * m.m31 + m44 * m.m41,
- m41 * m.m12 + m42 * m.m22 + m43 * m.m32 + m44 * m.m42,
- m41 * m.m13 + m42 * m.m23 + m43 * m.m33 + m44 * m.m43,
- m41 * m.m14 + m42 * m.m24 + m43 * m.m34 + m44 * m.m44);
- }
- matrix4 operator*(scalar s) const
- {
- return matrix4(m11 * s, m12 * s, m13 * s, m14 * s,
- m21 * s, m22 * s, m23 * s, m24 * s,
- m31 * s, m32 * s, m33 * s, m34 * s,
- m41 * s, m42 * s, m43 * s, m44 * s);
- }
- matrix4 operator/(scalar s) const
- {
- return matrix4(m11 / s, m12 / s, m13 / s, m14 / s,
- m21 / s, m22 / s, m23 / s, m24 / s,
- m31 / s, m32 / s, m33 / s, m34 / s,
- m41 / s, m42 / s, m43 / s, m44 / s);
- }
-
- matrix4& operator+=(const matrix4& m)
- {
- m11 += m.m11; m12 += m.m12; m13 += m.m13; m14 += m.m14;
- m21 += m.m21; m22 += m.m22; m23 += m.m23; m24 += m.m24;
- m31 += m.m31; m32 += m.m32; m33 += m.m33; m34 += m.m34;
- m41 += m.m41; m42 += m.m42; m43 += m.m43; m44 += m.m44;
- return *this;
- }
- matrix4& operator-=(const matrix4& m)
- {
- m11 -= m.m11; m12 -= m.m12; m13 -= m.m13; m14 -= m.m14;
- m21 -= m.m21; m22 -= m.m22; m23 -= m.m23; m24 -= m.m24;
- m31 -= m.m31; m32 -= m.m32; m33 -= m.m33; m34 -= m.m34;
- m41 -= m.m41; m42 -= m.m42; m43 -= m.m43; m44 -= m.m44;
- return *this;
- }
- matrix4& operator*=(const matrix4& m)
- {
- *this = *this * m;
- return *this;
- }
- matrix4& operator*=(scalar s)
- {
- m11 *= s; m12 *= s; m13 *= s; m14 *= s;
- m21 *= s; m22 *= s; m23 *= s; m24 *= s;
- m31 *= s; m32 *= s; m33 *= s; m34 *= s;
- m41 *= s; m42 *= s; m43 *= s; m44 *= s;
- return *this;
- }
- matrix4& operator/=(scalar s)
- {
- m11 /= s; m12 /= s; m13 /= s; m14 /= s;
- m21 /= s; m22 /= s; m23 /= s; m24 /= s;
- m31 /= s; m32 /= s; m33 /= s; m34 /= s;
- m41 /= s; m42 /= s; m43 /= s; m44 /= s;
- return *this;
- }
-
- matrix4 operator-() const
- {
- return matrix4(-m11, -m12, -m13, -m14,
- -m21, -m22, -m23, -m24,
- -m31, -m32, -m33, -m34,
- -m41, -m42, -m43, -m44);
- }
-
- bool operator==(const matrix4& m) const
- {
- return equals(m11,m.m11) && equals(m12,m.m12) && equals(m13,m.m13) &&
- equals(m14,m.m14) && equals(m21,m.m21) && equals(m22,m.m22) &&
- equals(m23,m.m23) && equals(m24,m.m24) && equals(m31,m.m31) &&
- equals(m32,m.m32) && equals(m33,m.m33) && equals(m34,m.m34) &&
- equals(m41,m.m41) && equals(m42,m.m42) && equals(m43,m.m43) &&
- equals(m44,m.m44);
- }
- bool operator!=(const matrix4& m) const
- {
- return !(*this == m);
- }
-
-
- union
- {
- struct
- {
- scalar m11, m21, m31, m41;
- scalar m12, m22, m32, m42;
- scalar m13, m23, m33, m43;
- scalar m14, m24, m34, m44; ///< scalars
- };
- scalar array[16]; ///< array
- };
-
- static matrix4 zero; ///< zero matrix
- static matrix4 identity; ///< identity matrix
-};
-
-inline matrix4 operator*(scalar s, const matrix4& m)
-{
- return m * s;
-}
-inline matrix4 operator/(scalar s, const matrix4& m)
-{
- return matrix4(s / m.m11, s / m.m12, s / m.m13, s / m.m14,
- s / m.m21, s / m.m22, s / m.m23, s / m.m24,
- s / m.m31, s / m.m32, s / m.m33, s / m.m34,
- s / m.m41, s / m.m42, s / m.m43, s / m.m44);
-}
-
-
-} // namespace dc
-
-
-#endif // _MATRIX_HH_
-
+++ /dev/null
-
-/*******************************************************************************
-
- Copyright (c) 2009, Charles McGarvey
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-#ifndef _QUATERNION_HH_
-#define _QUATERNION_HH_
-
-#include <cassert>
-
-#include "math.hh"
-#include "matrix.hh"
-#include "vector.hh"
-
-
-//
-// Quaternion -> 3x3 Matrix
-//
-// | w^2 + x^2 - y^2 - z^2 2xy - 2wz 2xz + 2yw |
-// | 2xy + 2wz w^2 - x^2 + y^2 - z^2 2yz - 2wx |
-// | 2xz - 2wy 2yz - 2wx w^2 - x^2 - y^2 + z^2 |
-//
-
-namespace dc {
-
-
-class quaternion
-{
-public:
- // Constructors.
- quaternion() {}
- quaternion(scalar X, scalar Y, scalar Z, scalar W) {
- vec.x = X; vec.y = Y; vec.z = Z; w = W;
- }
- quaternion(vector3 v, scalar W = 1.0) {
- vec = v; w = W;
- }
- quaternion(scalar q[4]) {
- vec.x = q[0]; vec.y = q[1]; vec.z = q[2]; w = q[3];
- }
-
- // Accessible by index.
- const scalar& operator [] (int i) const {
- assert(i >= 0 && i <= 3 && "Index into quaternion out of bounds.");
- return *((&vec.x) + i);
- }
- scalar& operator [] (int i) {
- assert(i >= 0 && i <= 3 && "Index into quaternion out of bounds.");
- //return vec[i];
- return *((&vec.x) + i);
- }
-
- // Basic maths.
- quaternion operator + (const quaternion& q) const {
- return quaternion(vec + q.vec, w + q.w);
- }
- quaternion operator - (const quaternion& q) const {
- return quaternion(vec - q.vec, w - q.w);
- }
- quaternion operator * (const quaternion& q) const {
- return quaternion(q.w * vec + w * q.vec + q.vec.cross(vec),
- w * q.w - q.vec.dot(vec));
- }
- quaternion operator * (scalar s) const {
- return quaternion(vec * s, w * s);
- }
- quaternion operator / (scalar s) const {
- return quaternion(vec / s, w / s);
- }
-
- quaternion& operator += (const quaternion& q) {
- vec += q.vec; w += q.w;
- return *this;
- }
- quaternion& operator -= (const quaternion& q) {
- vec -= q.vec; w -= q.w;
- return *this;
- }
- quaternion& operator *= (const quaternion& q) {
- scalar W = w;
- w = W * q.w - q.vec.dot(vec);
- vec = q.w * vec + W * q.vec + q.vec.cross(vec);
- return *this;
- }
- quaternion& operator *= (scalar s) {
- vec *= s; w *= s;
- return *this;
- }
- quaternion& operator /= (scalar s) {
- vec /= s; w /= s;
- return *this;
- }
-
- // Unary operators.
- quaternion operator - () const {
- return quaternion(-vec, -w);
- }
-
- // Quaternion operations.
- quaternion conjugate() const {
- return quaternion(-vec, w);
- }
- void normalize(const vector3& v)
- {
- scalar len = length();
- if (len != 0.0) { *this /= len; }
- }
-
- scalar length2() const {
- return vec.x * vec.x + vec.y * vec.y + vec.z * vec.z + w * w;
- }
- scalar length() const {
- return std::sqrt(length2());
- }
-
- // Converting to other types.
- matrix3 matrix() const {
- scalar x2 = vec.x * vec.x;
- scalar y2 = vec.y * vec.y;
- scalar z2 = vec.z * vec.z;
- scalar w2 = w * w;
- scalar xy = vec.x * vec.y;
- scalar xz = vec.x * vec.z;
- scalar yzwx = 2 * (vec.y * vec.z - w * vec.x);
- scalar wy = w * vec.y;
- scalar wz = w * vec.z;
- return matrix3(x2 - y2 - z2 + w2, 2 * (xy - wz), 2 * (xz + wy),
- 2 * (xy + wz), w2 - x2 + y2 - z2, yzwx,
- 2 * (xz - wy), yzwx, w2 - x2 - y2 + z2);
- }
- vector3 axis(scalar& angle) { // Axis of rotation, w/ angle of rotation.
- vector3 axisVec = axis();
- angle = 2 * std::acos(w);
- return axisVec;
- }
- vector3 axis() {
- scalar sa = std::sqrt(1 - w * w);
- return vec / sa;
- }
-
- // Checking equality.
- bool operator == (const quaternion& q) const {
- return vec == q.vec && equals(w,q.w);
- }
- bool operator != (const quaternion& q) const {
- return !(*this == q);
- }
-
- // Data.
- vector3 vec;
- scalar w;
-};
-
-inline quaternion operator * (scalar s, const quaternion& q) {
- return q * s;
-}
-inline quaternion operator / (scalar s, const quaternion& q) {
- return quaternion(s / q.vec, s / q.w);
-}
-
-} // namespace dc
-
-
-#endif // _QUATERNION_HH_
-
+++ /dev/null
-
-/*******************************************************************************
-
- Copyright (c) 2009, Charles McGarvey
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-#ifndef _VECTOR_HH_
-#define _VECTOR_HH_
-
-/**
- * @file vector.hh
- * Vector classes.
- */
-
-#include <iostream>
-#include <cassert>
-
-#include "math.hh"
-#include "random.hh"
-
-
-// TODO: project, reflect, random, normal (of plane), orthonormal
-
-namespace dc {
-
-/**
- * 2-dimensional vector.
- */
-
-struct vector2
-{
- vector2() {}
- vector2(scalar X, scalar Y) : x(X), y(Y) {}
- vector2(scalar v[2]) : x(v[0]), y(v[1]) {}
-
- const scalar& operator[](int i) const
- {
- assert(i >= 0 && i <= 1 && "Index into vector2 out of bounds.");
- return array[i];
- }
- scalar& operator[](int i)
- {
- assert(i >= 0 && i <= 1 && "Index into vector2 out of bounds.");
- return array[i];
- }
-
- vector2 operator+(const vector2& v) const
- {
- return vector2(x + v.x, y + v.y);
- }
- vector2 operator-(const vector2& v) const
- {
- return vector2(x - v.x, y - v.y);
- }
- vector2 operator*(scalar s) const
- {
- return vector2(x * s, y * s);
- }
- vector2 operator/(scalar s) const
- {
- return vector2(x / s, y / s);
- }
-
- vector2& operator+=(const vector2& v)
- {
- x += v.x; y += v.y;
- return *this;
- }
- vector2& operator-=(const vector2& v)
- {
- x -= v.x; y -= v.y;
- return *this;
- }
- vector2& operator*=(scalar s)
- {
- x *= s; y *= s;
- return *this;
- }
- vector2& operator/=(scalar s)
- {
- x /= s; y /= s;
- return *this;
- }
-
- vector2 operator-() const
- {
- return vector2(-x, -y);
- }
-
- scalar dot(const vector2& v) const /// dot product
- {
- return x * v.x + y * v.y;
- }
- scalar angleBetween(const vector2& v) const
- {
- scalar lens = length() * v.length();
- if (lens == 0.0) { return HUGE_VAL; }
- return std::acos(dot(v) / lens);
- }
-
- void normalize() /// scale such that length is one
- {
- scalar len = length();
- if (len != 0.0) { *this /= len; }
- }
- vector2 normalized() const
- {
- scalar len = length();
- if (len != 0.0) { return *this / len; }
- return vector2(0.0, 0.0);
- }
-
- scalar length2() const /// magnitude squared
- {
- return dot(*this);
- }
- scalar length() const /// magnitude
- {
- return std::sqrt(length2());
- }
-
- bool operator==(const vector2& v) const
- {
- return equals(x, v.x) && equals(y, v.y);
- }
- bool operator!=(const vector2& v) const
- {
- return !(*this == v);
- }
-
-
- static vector2 random()
- {
- vector2 v = random(-1.0, 1.0);
- v.normalize();
- return v;
- }
-
- static vector2 random(scalar lower, scalar upper)
- {
- return vector2(rng::get<scalar>(lower, upper),
- rng::get<scalar>(lower, upper));
- }
-
-
- union
- {
- struct
- {
- scalar x, y; ///< euler coordinates
- };
- scalar array[2]; ///< array
- };
-
- static vector2 zero; ///< zero vector
-};
-
-inline vector2 operator*(scalar s, const vector2& v)
-{
- return v * s;
-}
-inline vector2 operator/(scalar s, const vector2& v)
-{
- return vector2(s / v.x, s / v.y);
-}
-
-inline std::ostream& operator<<(std::ostream& output, const vector2& v)
-{
- output << "(" << v.x << "," << v.y << ")";
- return output;
-}
-
-
-typedef vector2 point;
-
-
-//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-/**
- * 3-dimensional vector.
- */
-
-struct vector3
-{
- vector3() {}
- vector3(scalar X, scalar Y, scalar Z) : x(X), y(Y), z(Z) {}
- vector3(scalar v[3]) : x(v[0]), y(v[1]), z(v[2]) {}
-
- const scalar& operator[](int i) const
- {
- assert(i >= 0 && i <= 2 && "Index into vector3 out of bounds.");
- return array[i];
- }
- scalar& operator[](int i)
- {
- assert(i >= 0 && i <= 2 && "Index into vector3 out of bounds.");
- return array[i];
- }
-
- vector3 operator+(const vector3& v) const
- {
- return vector3(x + v.x, y + v.y, z + v.z);
- }
- vector3 operator-(const vector3& v) const
- {
- return vector3(x - v.x, y - v.y, z - v.z);
- }
- vector3 operator*(scalar s) const
- {
- return vector3(x * s, y * s, z * s);
- }
- vector3 operator/(scalar s) const
- {
- return vector3(x / s, y / s, z / s);
- }
-
- vector3& operator+=(const vector3& v)
- {
- x += v.x; y += v.y; z += v.z;
- return *this;
- }
- vector3& operator-=(const vector3& v)
- {
- x -= v.x; y -= v.y; z -= v.z;
- return *this;
- }
- vector3& operator*=(scalar s)
- {
- x *= s; y *= s; z *= s;
- return *this;
- }
- vector3& operator/=(scalar s)
- {
- x /= s; y /= s; z /= s;
- return *this;
- }
-
- vector3 operator-() const
- {
- return vector3(-x, -y, -z);
- }
-
- scalar dot(const vector3& v) const /// dot product
- {
- return x * v.x + y * v.y + z * v.z;
- }
- vector3 cross(const vector3& v) const /// cross product
- {
- return vector3(y * v.z - z * v.y,
- z * v.x - x * v.z,
- x * v.y - y * v.x);
- }
-
- scalar angleBetween(const vector3& v) const
- {
- scalar lens = length() * v.length();
- if (lens == 0.0) { return HUGE_VAL; }
- return std::acos(dot(v) / lens);
- }
-
- void normalize() /// scale such that length is one
- {
- scalar len = length();
- if (len != 0.0) { *this /= len; }
- }
- vector3 normalized() const
- {
- scalar len = length();
- if (len != 0.0) { return *this / len; }
- return vector3(0.0, 0.0, 0.0);
- }
-
- scalar length2() const /// magnitude squared
- {
- return dot(*this);
- }
- scalar length() const /// magnitude
- {
- return std::sqrt(length2());
- }
-
- bool operator==(const vector3& v) const
- {
- return equals(x, v.x) && equals(y, v.y) && equals(z, v.z);
- }
- bool operator!=(const vector3& v) const
- {
- return !(*this == v);
- }
-
-
- static vector3 random()
- {
- vector3 v = random(-1.0, 1.0);
- v.normalize();
- return v;
- }
-
- static vector3 random(scalar lower, scalar upper)
- {
- return vector3(rng::get<scalar>(lower, upper),
- rng::get<scalar>(lower, upper),
- rng::get<scalar>(lower, upper));
- }
-
-
- union
- {
- struct
- {
- scalar x, y, z; ///< euler coordinates
- };
- struct
- {
- scalar u, v, w; ///< texture coordinates
- };
- struct
- {
- scalar r, g, b; ///< color intensities
- };
- scalar array[3]; ///< array
- };
-
- static vector3 zero; ///< zero vector
-};
-
-inline vector3 operator*(scalar s, const vector3& v)
-{
- return v * s;
-}
-inline vector3 operator/(scalar s, const vector3& v)
-{
- return vector3(s / v.x, s / v.y, s / v.z);
-}
-
-inline std::ostream& operator<<(std::ostream& output, const vector3& v)
-{
- output << "(" << v.x << "," << v.y << "," << v.z << ")";
- return output;
-}
-
-
-typedef vector3 color;
-
-
-} // namespace dc
-
-
-#endif // _VECTOR_HH_
-